Swarm Intelligence

[1]  S. Levin,et al.  Diffusion and Ecological Problems: Modern Perspectives , 2013 .

[2]  Kenneth O. Stanley,et al.  Evolving a diversity of virtual creatures through novelty search and local competition , 2011, GECCO '11.

[3]  Alex Alves Freitas,et al.  Multiple pheromone types and other extensions to the Ant-Miner classification rule discovery algorithm , 2011, Swarm Intelligence.

[4]  Kenneth O. Stanley,et al.  Abandoning Objectives: Evolution Through the Search for Novelty Alone , 2011, Evolutionary Computation.

[5]  Faustino J. Gomez,et al.  When Novelty Is Not Enough , 2011, EvoApplications.

[6]  Thomas Schmickl,et al.  Beeclust: A Swarm Algorithm Derived from Honeybees Derivation of the Algorithm, Analysis by Mathematical Models and Implementation on a Robot Swarm , 2011 .

[7]  Jean-Baptiste Mouret Novelty-Based Multiobjectivization , 2011 .

[8]  Kenneth O. Stanley,et al.  Revising the evolutionary computation abstraction: minimal criteria novelty search , 2010, GECCO '10.

[9]  Jeff Heaton,et al.  Programming Neural Networks with Encog 2 in Java , 2010 .

[10]  Nikolaus Correll,et al.  Multi-level Spatial Modeling for Swarm-Robotic Systems , 2010 .

[11]  Thomas A. Runkler,et al.  Using a Local Discovery Ant Algorithm for Bayesian Network Structure Learning , 2009, IEEE Transactions on Evolutionary Computation.

[12]  Charles E. Hughes,et al.  How novelty search escapes the deceptive trap of learning to learn , 2009, GECCO.

[13]  Qiang Shen,et al.  Learning Bayesian Network Equivalence Classes with Ant Colony Optimization , 2009, J. Artif. Intell. Res..

[14]  Francesco Mondada,et al.  The e-puck, a Robot Designed for Education in Engineering , 2009 .

[15]  Alex Alves Freitas,et al.  cAnt-Miner: An Ant Colony Classification Algorithm to Cope with Continuous Attributes , 2008, ANTS Conference.

[16]  Thomas A. Runkler,et al.  Learning of Bayesian networks by a local discovery ant colony algorithm , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[17]  Mark Yim,et al.  Towards robotic self-reassembly after explosion , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Erol Şahin,et al.  Aggregation in Swarm Robotic Systems: Evolution and Probabilistic Control , 2007 .

[19]  Nicolas Bredèche,et al.  Simbad: An Autonomous Robot Simulation Package for Education and Research , 2006, SAB.

[20]  Erol Sahin,et al.  Evolving aggregation behaviors for swarm robotic systems: a systematic case study , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[21]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[22]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[23]  Gregory F. Cooper,et al.  A Bayesian method for the induction of probabilistic networks from data , 1992, Machine Learning.

[24]  Risto Miikkulainen,et al.  Efficient evolution of neural networks through complexification , 2004 .

[25]  Marco Dorigo,et al.  Evolving Aggregation Behaviors in a Swarm of Robots , 2003, ECAL.

[26]  Stefano Nolfi,et al.  Evolving Mobile Robots Able to Display Collective Behaviors , 2003, Artificial Life.

[27]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[28]  S. Strogatz Exploring complex networks , 2001, Nature.

[29]  T. Vicsek,et al.  Collective Motion , 1999, physics/9902023.

[30]  Nir Friedman,et al.  Learning Bayesian Networks with Local Structure , 1996, UAI.

[31]  Inman Harvey,et al.  Issues in evolutionary robotics , 1993 .

[32]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[33]  D. E. Goldberg,et al.  Simple Genetic Algorithms and the Minimal, Deceptive Problem , 1987 .

[34]  A. Ōkubo Dynamical aspects of animal grouping: swarms, schools, flocks, and herds. , 1986, Advances in biophysics.