Relating voltage and thermal safety in Li-ion battery cathodes: a high-throughput computational study.

High voltage and high thermal safety are desirable characteristics of cathode materials, but difficult to achieve simultaneously. This work uses high-throughput density functional theory computations to evaluate the link between voltage and safety (as estimated by thermodynamic O2 release temperatures) for over 1400 cathode materials. Our study indicates that a strong inverse relationship exists between voltage and safety: just over half the variance in O2 release temperature can be explained by voltage alone. We examine the effect of polyanion group, redox couple, and ratio of oxygen to counter-cation on both voltage and safety. As expected, our data demonstrates that polyanion groups improve safety when comparing compounds with similar voltages. However, a counterintuitive result of our study is that polyanion groups produce either no benefit or reduce safety when comparing compounds with the same redox couple. Using our data set, we tabulate voltages and oxidation potentials for over 105 combinations of redox couple/anion, which can be used towards the design and rationalization of new cathode materials. Overall, only a few compounds in our study, representing limited redox couple/polyanion combinations, exhibit both high voltage and high safety. We discuss these compounds in more detail as well as the opportunities for designing safe, high-voltage cathodes.

[1]  Anubhav Jain,et al.  Improved Capacity Retention for LiVO2 by Cr Substitution , 2013 .

[2]  Yanming Zhao,et al.  The structure and electrochemical performance of LiFeBO3 as a novel Li-battery cathode material , 2008 .

[3]  Y. Baba,et al.  Thermal stability of LixCoO2 cathode for lithium ion battery , 2002 .

[4]  W. Marsden I and J , 2012 .

[5]  Anubhav Jain,et al.  A Computational Investigation of Li9M3(P2O7)3(PO4)2 (M = V, Mo) as Cathodes for Li Ion Batteries , 2012 .

[6]  G. Graff,et al.  Thermal stability and phase transformation of electrochemically charged/discharged LiMnPO4 cathode for Li-ion batteries , 2011 .

[7]  Yoji Sakurai,et al.  Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries , 2002 .

[8]  Anubhav Jain,et al.  Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughput ab Initio Calculations , 2011 .

[9]  Philip E. Ross,et al.  Boeing's battery blues [News] , 2013 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Kisuk Kang,et al.  Phase Stability Study of Li1-xMnPO4 (0 <= x <= 1) Cathode for Li Rechargeable Battery , 2009 .

[12]  Qingsong Wang,et al.  Thermal runaway caused fire and explosion of lithium ion battery , 2012 .

[13]  M. Osada,et al.  Synthesis and electrochemistry of new layered (1 − x)LiVO2·xLi2TiO3 (0 ≤ x ≤ 0.6) electrode materials , 2007 .

[14]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[15]  Anubhav Jain,et al.  Data mined ionic substitutions for the discovery of new compounds. , 2011, Inorganic chemistry.

[16]  I. D. Brown,et al.  The inorganic crystal structure data base , 1983, J. Chem. Inf. Comput. Sci..

[17]  S. Curtarolo,et al.  AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.

[18]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[19]  Jean-Marie Tarascon,et al.  On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni) , 2006 .

[20]  G. Ceder,et al.  Identification of cathode materials for lithium batteries guided by first-principles calculations , 1998, Nature.

[21]  Arumugam Manthiram,et al.  Microwave-Solvothermal Synthesis of Nanostructured Li2MSiO4/C (M = Mn and Fe) Cathodes for Lithium-Ion Batteries , 2010 .

[22]  S. Chakraborty,et al.  Thermal runaway inhibitors for lithium battery electrolytes , 2006 .

[23]  Hajime Arai,et al.  Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds , 1996 .

[24]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[25]  Shyue Ping Ong,et al.  Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds , 2010 .

[26]  Y. S. Lee,et al.  Synthesis and improved electrochemical properties of Li2MnSiO4 cathodes , 2011 .

[27]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[28]  John B. Goodenough,et al.  Structural refinement of delithiated LiVO2 by neutron diffraction , 1987 .

[29]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[30]  A. Yamada,et al.  Pyrophosphate Chemistry toward Safe Rechargeable Batteries , 2013 .

[31]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[32]  Jürgen Hafner,et al.  Materials simulations using VASP - a quantum perspective to materials science , 2007, Comput. Phys. Commun..

[33]  Rüdiger Mack,et al.  FIZ Karlsruhe , 2005, Inf. Serv. Use.

[34]  K. Nikolowski,et al.  Thermal Stability of LiCoPO4 Cathodes , 2008 .

[35]  Huanting Wang,et al.  Thermal stability of LiPF6-based electrolyte and effect of contact with various delithiated cathodes of Li-ion batteries , 2009 .

[36]  P. Bruce,et al.  The reaction of lithium with CuCr2S4—lithium intercalation and copper displacement/extrusion , 2007 .

[37]  Anubhav Jain,et al.  Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations , 2010 .

[38]  R. Huggins,et al.  Relationships among electrochemical, thermodynamic, and oxygen potential quantities in lithium-transition metal-oxygen molten salt cells , 1984 .

[39]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[40]  Doron Aurbach,et al.  LiMnPO4 as an Advanced Cathode Material for Rechargeable Lithium Batteries , 2009 .

[41]  Michel Armand,et al.  Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material , 2005 .

[42]  Yuki Yamada,et al.  Na2FeP2O7: A Safe Cathode for Rechargeable Sodium-ion Batteries , 2013 .

[43]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[44]  S. Papson,et al.  “Model” , 1981 .

[45]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[46]  R. Drautz,et al.  High-throughput ab initio screening of binary solid solutions in olivine phosphates for Li-ion battery cathodes , 2013 .

[47]  Guoying Chen Thermal Instability of Olivine-Type LiMnP04 Cathodes , 2010 .

[48]  J. Dahn,et al.  Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells , 1994 .

[49]  R. G. Barnes,et al.  Unusual doublet structure in proton magnetic-resonance spectra of yttrium and lutetium trihydrides , 2004 .

[50]  Gerbrand Ceder,et al.  A First-Principles Approach to Studying the Thermal Stability of Oxide Cathode Materials , 2007 .

[51]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[52]  D. D. MacNeil,et al.  A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes , 2002 .

[53]  S. Moon,et al.  Thermal analysis of LixCoO2 cathode material of lithium ion battery , 2009 .

[54]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[55]  R. Spotnitz,et al.  Abuse behavior of high-power, lithium-ion cells , 2003 .

[56]  Anubhav Jain,et al.  A high-throughput infrastructure for density functional theory calculations , 2011 .

[57]  K. Kang,et al.  Thermal stability of Fe–Mn binary olivine cathodes for Li rechargeable batteries , 2012 .

[58]  Anubhav Jain,et al.  Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory , 2010 .

[59]  Quan Kuang,et al.  Layered monodiphosphate Li9V3(P2O7)3(PO4)2: A novel cathode material for lithium-ion batteries , 2011 .

[60]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[61]  Anubhav Jain,et al.  Formation enthalpies by mixing GGA and GGA + U calculations , 2011 .

[62]  John B. Goodenough,et al.  Effect of Structure on the Fe3 + / Fe2 + Redox Couple in Iron Phosphates , 1997 .

[63]  Yongyao Xia,et al.  Comparison of thermal stability between micro- and nano-sized materials for lithium-ion batteries , 2013 .

[64]  T. Fuller,et al.  A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .

[65]  Zonghai Chen,et al.  Advanced cathode materials for lithium-ion batteries , 2011 .

[66]  Claudia Felser,et al.  Doped semiconductors as half-metallic materials: Experiments and first-principles calculations of CoTi1-xMxSb (M = Sc, V, Cr, Mn, Fe) , 2008 .

[67]  Jeffrey W. Fergus,et al.  Recent developments in cathode materials for lithium ion batteries , 2010 .

[68]  Gerbrand Ceder,et al.  Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .

[69]  Markus Herklotz,et al.  Lithium Copper(I) Orthophosphates Li3–xCuxPO4: Synthesis, Crystal Structures, and Electrochemical Properties† , 2014 .

[70]  Linda F. Nazar,et al.  Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-Ion batteries , 2000 .

[71]  A. Shukla,et al.  Large-scale correlated calculations of linear optical absorption and low-lying excited states of polyacenes: Pariser-Parr-Pople Hamiltonian , 2007, 0704.3754.

[72]  Qingsong Wang,et al.  Thermal Stability of Delithiated LiMn2O4 with Electrolyte for Lithium-Ion Batteries , 2007 .

[73]  D. Mikhailova,et al.  Thermal stability of Li1−ΔM0.5Mn1.5O4 (M = Fe, Co, Ni) cathodes in different states of delithiation Δ , 2013 .

[74]  Gus L. W. Hart,et al.  Algorithm for Generating Derivative Structures , 2008 .

[75]  J. Barker,et al.  Performance characteristics of lithium vanadium phosphate as a cathode material for lithium-ion batteries , 2003 .

[76]  Anubhav Jain,et al.  Designing Multielectron Lithium-Ion Phosphate Cathodes by Mixing Transition Metals , 2013 .

[77]  J. Barker,et al.  Lithium metal phosphates, power and automotive applications , 2009 .

[78]  J. Dahn,et al.  Morphology and Safety of Li [ Ni x Co1 − 2x Mn x ] O 2 ( 0 ⩽ x ⩽ 1 / 2 ) , 2003 .

[79]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[80]  Robert Dominko,et al.  Silicate cathodes for lithium batteries: alternatives to phosphates? , 2011 .

[81]  Jun-ichi Yamaki,et al.  Fluoride phosphate li2copo4f as a high-voltage cathode in li-ion batteries , 2005 .

[82]  Daniel H. Doughty,et al.  A General Discussion of Li Ion Battery Safety , 2012 .

[83]  Sai-Cheong Chung,et al.  Optimized LiFePO4 for Lithium Battery Cathodes , 2001 .

[84]  Sai-Cheong Chung,et al.  Crystal Chemistry of the Olivine-Type Li ( Mn y Fe1 − y ) PO 4 and ( Mn y Fe1 − y ) PO 4 as Possible 4 V Cathode Materials for Lithium Batteries , 2001 .

[85]  Lei Wang,et al.  Li−Fe−P−O2 Phase Diagram from First Principles Calculations , 2008 .

[86]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[87]  Robert A. Huggins,et al.  Do You Really Want an Unsafe Battery , 2012 .