Semantic mapping with image segmentation using Conditional Random Fields

Most maps used in navigation by mobile robots represent only spatial information. By the other hand, semantic information, which could be thought of as the classification of spatial primitives in different classes, provides structure to spatial information, hence reducing any necessary computation over the final map. This article proposes a semantic mapping process that represents an association between obstacles in a grid-based map and the correspondent regions of interest (ROI) in images from a vision system. The implementation consists of clustering laser measurement points related to a single obstacle and projecting them in images to be segmented using a Conditional Random Field (CRF) model to obtain visual descriptions of the detected obstacles. Results with real data are provided.

[1]  Martial Hebert,et al.  Discriminative random fields: a discriminative framework for contextual interaction in classification , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[2]  Sebastian Thrun,et al.  Detecting and modeling doors with mobile robots , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[3]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[4]  Gaurav S. Sukhatme,et al.  Activity-Based Semantic Mapping of an Urban Environment , 2006, ISER.

[5]  Hugh F. Durrant-Whyte,et al.  Combining Object Recognition and SLAM for Extended Map Representations , 2006, ISER.

[6]  Joachim Hertzberg,et al.  3D Mapping with Semantic Knowledge , 2005, RoboCup.

[7]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[8]  Tomás Svoboda,et al.  Epipolar Geometry of Panoramic Cameras , 1998, ECCV.

[9]  Hans P. Moravec,et al.  High resolution maps from wide angle sonar , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[10]  Roland Siegwart,et al.  Cognitive maps for mobile robots - an object based approach , 2007, Robotics Auton. Syst..

[11]  Wolfram Burgard,et al.  Instace-Based AMN Classification for Improved Object Recognition in 2D and 3D Laser Range Data , 2007, IJCAI.

[12]  Andrew McCallum,et al.  An Introduction to Conditional Random Fields for Relational Learning , 2007 .

[13]  Valdir Grassi Junior Sistema de visão omnidirecional aplicado no controle de robôs móveis. , 2002 .

[14]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[15]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[16]  Ben Taskar,et al.  Discriminative learning of Markov random fields for segmentation of 3D scan data , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[17]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[18]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[19]  Miguel Á. Carreira-Perpiñán,et al.  Multiscale conditional random fields for image labeling , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[20]  Michael I. Jordan,et al.  Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.

[21]  Wolfram Burgard,et al.  Supervised semantic labeling of places using information extracted from sensor data , 2007, Robotics Auton. Syst..

[23]  Dieter Fox,et al.  Relational Object Maps for Mobile Robots , 2005, IJCAI.