Brief paper Hierarchical gradient-based identification of multivariable discrete-time systems

In this paper, we use a hierarchical identification principle to study identification problems for multivariable discrete-time systems. We propose a hierarchical gradient iterative algorithm and a hierarchical stochastic gradient algorithm and prove that the parameter estimation errors given by the algorithms converge to zero for any initial values under persistent excitation. The proposed algorithms can be applied to identification of systems involving non-stationary signals and have significant computational advantage over existing identification algorithms. Finally, we test the proposedalgorithms by simulation andshow their effectiveness. 2004 Elsevier Ltd. All rights reserved.

[1]  Ioan Doré Landau,et al.  On the recursive identification of multi-input, multi-output systems , 1978, Autom..

[2]  Tongwen Chen,et al.  Multirate sampled-data systems: all H∞ suboptimal controllers and the minimum entropy controller , 1999, IEEE Trans. Autom. Control..

[3]  Michel Verhaegen,et al.  Identification of the deterministic part of MIMO state space models given in innovations form from input-output data , 1994, Autom..

[4]  Bin Yang,et al.  Asymptotic convergence analysis of the projection approximation subspace tracking algorithms , 1996, Signal Process..

[5]  M. Verhaegen Subspace model identification Part 2. Analysis of the elementary output-error state-space model identification algorithm , 1992 .

[6]  Patrick Dewilde,et al.  Subspace model identification Part 1. The output-error state-space model identification class of algorithms , 1992 .

[7]  Michel Verhaegen,et al.  Subspace Algorithms for the Identification of Multivariable Dynamic Errors-in-Variables Models , 1997, Autom..

[8]  T. Lai,et al.  Recursive identification and adaptive prediction in linear stochastic systems , 1991 .

[9]  田村 坦之,et al.  Large-scale systems control and decision making , 1990 .

[10]  Naresh K. Sinha,et al.  Recursive estimation of the parameters of linear multivariable systems , 1979, Autom..

[11]  Hidenori Kimura,et al.  Recursive 4SID algorithms using gradient type subspace tracking , 2002, Autom..

[12]  Li Qiu,et al.  𝓗2-optimal Design of Multirate Sampled-data Systems , 1994, IEEE Trans. Autom. Control..

[13]  Dongguang Li,et al.  Identification of fast-rate models from multirate data , 2001 .

[14]  Dongguang Li,et al.  Ripple-free conditions for lifted multirate control systems , 2001, Autom..

[15]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[16]  Madan G. Singh,et al.  Dynamical Hierarchical Control , 1977 .

[17]  Michel Verhaegen,et al.  Recursive subspace identification of linear and non-linear Wiener state-space models , 2000, Autom..

[18]  Bin Yang,et al.  Projection approximation subspace tracking , 1995, IEEE Trans. Signal Process..

[19]  Bart De Moor,et al.  Continuous-time frequency domain subspace system identification , 1996, Signal Process..

[20]  Rik Pintelon Frequency-domain subspace system identification using non-parametric noise models , 2002, Autom..

[21]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[22]  L. Ljung,et al.  Subspace-based multivariable system identification from frequency response data , 1996, IEEE Trans. Autom. Control..

[23]  N. Sinha,et al.  Choice of models for the identification of linear multivariable discrete-time systems , 1979 .

[24]  Li Qiu,et al.  H∞ design of general multirate sampled-data control systems , 1994, Autom..

[25]  Dongguang Li,et al.  Application of dual-rate modeling to CCR octane quality inferential control , 2001, IEEE Trans. Control. Syst. Technol..

[26]  M. Verhaegen,et al.  A fast, recursive MIMO state space model identification algorithm , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[27]  G. Golub,et al.  Tracking a few extreme singular values and vectors in signal processing , 1990, Proc. IEEE.

[28]  Tony Gustafsson,et al.  Instrumental variable subspace tracking using projection approximation , 1998, IEEE Trans. Signal Process..

[29]  Dongguang Li,et al.  Analysis of dual-rate inferential control systems , 2002, Autom..

[30]  Thomas Kailath,et al.  Fast recursive identification of state space models via exploitation of displacement structure , 1994, Autom..