A probabilistic approach to optimal estimation - Part II: algorithms and applications

In this paper, we develop randomized and deterministic algorithms for computing the probabilistic radius of information associated to an identification problem, and the corresponding optimal probabilistic estimate. To compute this estimate, in the companion paper [11] the concept of optimal violation function is introduced. Moreover, for the case of uniform distributions, it is shown how its computation is related to the solution of a (quasi) concave optimization problem, based on to the maximization of the volume of a specially constructed polytope. In this second paper, we move a step further and develop specific algorithms for addressing this problem. In particular, since the problem is NP-hard, we propose both randomized relaxations (based on a probabilistic volume oracle and stochastic optimization algorithms), and deterministic ones (based on semi-definite programming). Finally, we present a numerical example illustrating the performance of the proposed algorithms.

[1]  J. Spall Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .

[2]  L. Khachiyan Complexity of Polytope Volume Computation , 1993 .

[3]  Komei Fukuda,et al.  Exact volume computation for polytopes: a practical study , 1996 .

[4]  A. Shapiro Monte Carlo Sampling Methods , 2003 .

[5]  Giuseppe Carlo Calafiore,et al.  Interval predictor models: Identification and reliability , 2009, Autom..

[6]  James C. Spall,et al.  Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control (Spall, J.C. , 2007 .

[7]  H. Woxniakowski Information-Based Complexity , 1988 .

[8]  Giuseppe Carlo Calafiore,et al.  Radial and Uniform Distributions in Vector and Matrix Spaces for Probabilistic Robustness , 1999 .

[9]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[10]  H. Kushner,et al.  Stochastic Approximation and Recursive Algorithms and Applications , 2003 .

[11]  Roberto Tempo,et al.  Probabilistic Optimal Estimation and Filtering under Uncertainty , 2012, ArXiv.

[12]  R. Tempo,et al.  Optimal algorithms theory for robust estimation and prediction , 1985 .

[13]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[14]  R. Tempo,et al.  Randomized Algorithms for Analysis and Control of Uncertain Systems , 2004 .

[15]  Giuseppe Carlo Calafiore,et al.  Random Convex Programs , 2010, SIAM J. Optim..

[16]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[17]  James C. Spa Estimation via Markov Chain Monte Carlo , 2002 .

[18]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[19]  Michael C. Fu,et al.  Convergence of simultaneous perturbation stochastic approximation for nondifferentiable optimization , 2003, IEEE Trans. Autom. Control..

[20]  Hee-Kap Ahn,et al.  Maximum Overlap of Convex Polytopes under Translation , 2010, ISAAC.

[21]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[22]  Takeaki Uno,et al.  Polynomial time algorithms for maximizing the intersection volume of polytopes , 2007 .

[23]  Roberto Tempo,et al.  A probabilistic approach to optimal estimation part I: Problem formulation and methodology , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[24]  Giuseppe Carlo Calafiore,et al.  The scenario approach to robust control design , 2006, IEEE Transactions on Automatic Control.

[25]  J. K. Hunter,et al.  Measure Theory , 2007 .

[26]  Giuseppe Carlo Calafiore,et al.  Research on probabilistic methods for control system design , 2011, Autom..

[27]  Marco C. Campi,et al.  A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality , 2011, J. Optim. Theory Appl..