Guest column: A panorama of counting problems the decision version of which is in P3

Since Valiant's seminal work, where the complexity class #P was defined, much research has been done on counting complexity, from various perspectives. A question that permeates many of these efforts concerns the approximability of counting problems, in particular which of them admit an efficient approximation scheme (fpras). A counting problem (a function from Σ* to N) that admits an fpras must necessarily have an easy way to decide whether the output value is nonzero. Having this in mind, we focus our attention on classes of counting problems, the decision version of which is in P (or in RP). We discuss structural characterizations for classes of such problems under various lenses: Cook and Karp reductions, path counting in non-deterministic Turing machines, approximability and approximation-preserving reductions, easy decision by randomization, descriptive complexity, and interval-size functions. We end up with a rich landscape inside #P, revealing a number of inclusions and separations among complexity classes of easy-to-decide counting problems.

[1]  Completeness, approximability and exponential time results for counting problems with easy decision version , 2022, Theoretical Computer Science.

[2]  Tobias Friedrich,et al.  A Spectral Independence View on Hard Spheres via Block Dynamics , 2021, ICALP.

[3]  Heng Guo,et al.  Zeros of Holant Problems , 2021, ACM Trans. Algorithms.

[4]  Marcelo Arenas,et al.  Efficient Logspace Classes for Enumeration, Counting, and Uniform Generation , 2020, SIGMOD Rec..

[5]  Characterizations and approximability of hard counting classes below #P , 2020, ArXiv.

[6]  Jin-Yi Cai,et al.  Counting perfect matchings and the eight-vertex model , 2020, ICALP.

[7]  Cassio Polpo de Campos,et al.  A Structured View on Weighted Counting with Relations to Counting, Quantum Computation and Applications , 2017, Inf. Comput..

[8]  Heng Guo,et al.  Zeros of Holant problems: locations and algorithms , 2019, SODA.

[9]  Marcelo Arenas,et al.  Descriptive Complexity for counting complexity classes , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[10]  Viresh Patel,et al.  Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials , 2016, Electron. Notes Discret. Math..

[11]  Alexander I. Barvinok,et al.  Combinatorics and Complexity of Partition Functions , 2017, Algorithms and combinatorics.

[12]  Aris Pagourtzis,et al.  On the connection between interval size functions and path counting , 2016, computational complexity.

[13]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[14]  Pinyan Lu,et al.  FPTAS for Counting Monotone CNF , 2015, SODA.

[15]  Eric Vigoda,et al.  #BIS-hardness for 2-spin systems on bipartite bounded degree graphs in the tree non-uniqueness region , 2013, J. Comput. Syst. Sci..

[16]  Leslie Ann Goldberg,et al.  The Complexity of Computing the Sign of the Tutte Polynomial , 2012, SIAM J. Comput..

[17]  Eric Vigoda,et al.  Improved inapproximability results for counting independent sets in the hard-core model , 2014, Random Struct. Algorithms.

[18]  Dan Suciu,et al.  The dichotomy of probabilistic inference for unions of conjunctive queries , 2012, JACM.

[19]  Leslie Ann Goldberg,et al.  Approximating the partition function of the ferromagnetic Potts model , 2010, JACM.

[20]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[21]  Magnus Bordewich,et al.  On the Approximation Complexity Hierarchy , 2010, WAOA.

[22]  Allan Sly,et al.  Computational Transition at the Uniqueness Threshold , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[23]  Martin E. Dyer,et al.  An approximation trichotomy for Boolean #CSP , 2010, J. Comput. Syst. Sci..

[24]  Noam Livne A note on I-completeness of NP-witnessing relations , 2009, Inf. Process. Lett..

[25]  Piotr Faliszewski,et al.  The complexity of power-index comparison , 2008, Theor. Comput. Sci..

[26]  Paul Gastin,et al.  Weighted automata and weighted logics , 2005, Theor. Comput. Sci..

[27]  Lane A. Hemaspaandra,et al.  The Complexity of Computing the Size of an Interval , 2001, ICALP.

[28]  Aris Pagourtzis,et al.  The Complexity of Counting Functions with Easy Decision Version , 2006, MFCS.

[29]  Dror Weitz,et al.  Counting independent sets up to the tree threshold , 2006, STOC '06.

[30]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[31]  Jacobo Torán,et al.  On counting and approximation , 1989, Acta Informatica.

[32]  W. T. Tutte,et al.  Graph-polynomials , 2004, Adv. Appl. Math..

[33]  Martin E. Dyer,et al.  The Relative Complexity of Approximate Counting Problems , 2000, Algorithmica.

[34]  Lane A. Hemaspaandra,et al.  The complexity theory companion , 2001, SIGA.

[35]  Aggelos Kiayias,et al.  Acceptor-Definable Counting Classes , 2001, Panhellenic Conference on Informatics.

[36]  Phokion G. Kolaitis,et al.  Subtractive Reductions and Complete Problems for Counting Complexity Classes , 2000, MFCS.

[37]  Neil Immerman,et al.  Descriptive Complexity , 1999, Graduate Texts in Computer Science.

[38]  Sampath Kannan,et al.  A Quasi-Polynomial-Time Algorithm for Sampling Words from a Context-Free Language , 1997, Inf. Comput..

[39]  David Zuckerman,et al.  On Unapproximable Versions of NP-Complete Problems , 1996, SIAM J. Comput..

[40]  Lane A. Hemaspaandra SIGACT News Complexity Theory Column 10 , 1995, SIGA.

[41]  Lane A. Hemaspaandra,et al.  Witness-Isomorphic Reductions and the Local Search Problem (Extended Abstract) , 1995, MFCS.

[42]  K. V. Subrahmanyam,et al.  Descriptive Complexity of #P Functions , 1995, J. Comput. Syst. Sci..

[43]  David R. Karger,et al.  A randomized fully polynomial time approximation scheme for the all terminal network reliability problem , 1995, STOC '95.

[44]  Sampath Kannan,et al.  Counting and random generation of strings in regular languages , 1995, SODA '95.

[45]  Eric Allender,et al.  Relationships among PL, #L, and the determinant , 1994, Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory.

[46]  Heribert Vollmer On Different Reducibility Notions for Function Classes , 1994, STACS.

[47]  Carme Àlvarez,et al.  A Very Hard log-Space Counting Class , 1993, Theor. Comput. Sci..

[48]  Leslie Ann Goldberg,et al.  Efficient algorithms for listing combinatorial structures , 1993 .

[49]  Stuart A. Kurtz,et al.  Gap-definable counting classes , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[50]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[51]  Viktória Zankó,et al.  #P-Completeness via Many-One Reductions , 1990, Int. J. Found. Comput. Sci..

[52]  Lane A. Hemaspaandra,et al.  A Complexity Theory for Feasible Closure Properties , 1991, J. Comput. Syst. Sci..

[53]  Seinosuke Toda On the computational power of PP and (+)P , 1989, 30th Annual Symposium on Foundations of Computer Science.

[54]  Richard M. Karp,et al.  Monte-Carlo Approximation Algorithms for Enumeration Problems , 1989, J. Algorithms.

[55]  Martin E. Dyer,et al.  A random polynomial-time algorithm for approximating the volume of convex bodies , 1991, JACM.

[56]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..

[57]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, WG.

[58]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[59]  Mark W. Krentel The complexity of optimization problems , 1986, STOC '86.

[60]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[61]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[62]  Janos Simon On some central problems in computational complexity , 1975 .

[63]  D. Knuth Estimating the efficiency of backtrack programs. , 1974 .

[64]  Ronald Fagin Generalized first-order spectra, and polynomial. time recognizable sets , 1974 .

[65]  P. W. Kasteleyn Dimer Statistics and Phase Transitions , 1963 .

[66]  M. Fisher,et al.  Dimer problem in statistical mechanics-an exact result , 1961 .

[67]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[68]  G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .