Multilayer Scattering Image Analysis Fits fMRI Activity in Visual Areas

The scattering transform is a hierarchical signal transformation that has been designed to be robust to signal deformations. It can be used to compute representations with invariance or tolerance to any transformation group, such as translations, rotations or scaling. In image analysis, going beyond edge detection, its second layer captures higher order features, providing a fine-grain dissection of the signal. Here we use the output coefficients to fit blood oxygen level dependent (BOLD) signal in visual areas using functional magnetic resonance imaging. Significant improvement in the prediction accuracy is shown when using the second layer in addition to the first, suggesting biological relevance of the features extracted in layer two or linear combinations thereof.

[1]  Stéphane Mallat,et al.  Group Invariant Scattering , 2011, ArXiv.

[2]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[3]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[4]  Lorenzo Rosasco,et al.  On Invariance in Hierarchical Models , 2009, NIPS.

[5]  Joakim Andén,et al.  Multiscale Scattering for Audio Classification , 2011, ISMIR.

[6]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[7]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[8]  Stéphane Mallat,et al.  Classification with scattering operators , 2010, CVPR 2011.

[9]  Vincent Lepetit,et al.  A fast local descriptor for dense matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Ryan J. Prenger,et al.  Bayesian Reconstruction of Natural Images from Human Brain Activity , 2009, Neuron.

[12]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[13]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[14]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  J. Gallant,et al.  Identifying natural images from human brain activity , 2008, Nature.

[16]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[17]  Stéphane Mallat,et al.  Combined scattering for rotation invariant texture analysis , 2012, ESANN.

[18]  Yoshua Bengio,et al.  Convolutional networks for images, speech, and time series , 1998 .

[19]  Tomaso Poggio,et al.  Derived Distance : towards a mathematical theory of visual cortex , 2007 .