Principal components of functional connectivity: A new approach to study dynamic brain connectivity during rest

Functional connectivity (FC) as measured by correlation between fMRI BOLD time courses of distinct brain regions has revealed meaningful organization of spontaneous fluctuations in the resting brain. However, an increasing amount of evidence points to non-stationarity of FC; i.e., FC dynamically changes over time reflecting additional and rich information about brain organization, but representing new challenges for analysis and interpretation. Here, we propose a data-driven approach based on principal component analysis (PCA) to reveal hidden patterns of coherent FC dynamics across multiple subjects. We demonstrate the feasibility and relevance of this new approach by examining the differences in dynamic FC between 13 healthy control subjects and 15 minimally disabled relapse-remitting multiple sclerosis patients. We estimated whole-brain dynamic FC of regionally-averaged BOLD activity using sliding time windows. We then used PCA to identify FC patterns, termed "eigenconnectivities", that reflect meaningful patterns in FC fluctuations. We then assessed the contributions of these patterns to the dynamic FC at any given time point and identified a network of connections centered on the default-mode network with altered contribution in patients. Our results complement traditional stationary analyses, and reveal novel insights into brain connectivity dynamics and their modulation in a neurodegenerative disease.

[1]  M. Filippi,et al.  Cortical adaptation in patients with MS: a cross-sectional functional MRI study of disease phenotypes , 2005, The Lancet Neurology.

[2]  Gian Domenico Iannetti,et al.  Cortical motor reorganization after a single clinical attack of multiple sclerosis. , 2002, Brain : a journal of neurology.

[3]  P M Matthews,et al.  Imaging axonal damage of normal-appearing white matter in multiple sclerosis. , 1998, Brain : a journal of neurology.

[4]  Juliane Britz,et al.  EEG microstate sequences in healthy humans at rest reveal scale-free dynamics , 2010, Proceedings of the National Academy of Sciences.

[5]  Tom Minka,et al.  Automatic Choice of Dimensionality for PCA , 2000, NIPS.

[6]  M. Fox,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[7]  Rajesh Nandy,et al.  Estimation of the intrinsic dimensionality of fMRI data , 2006, NeuroImage.

[8]  Anthony Randal McIntosh,et al.  Partial Least Squares (PLS) methods for neuroimaging: A tutorial and review , 2011, NeuroImage.

[9]  F. Esposito,et al.  Distributed changes in default-mode resting-state connectivity in multiple sclerosis , 2011, Multiple sclerosis.

[10]  V. Calhoun,et al.  Multisubject Independent Component Analysis of fMRI: A Decade of Intrinsic Networks, Default Mode, and Neurodiagnostic Discovery , 2012, IEEE Reviews in Biomedical Engineering.

[11]  Kristoffer Hougaard Madsen,et al.  Expanded functional coupling of subcortical nuclei with the motor resting-state network in multiple sclerosis , 2013, Multiple sclerosis.

[12]  F. Barkhof The clinico‐radiological paradox in multiple sclerosis revisited , 2002, Current opinion in neurology.

[13]  Dimitri Van De Ville,et al.  Decoding brain states from fMRI connectivity graphs , 2011, NeuroImage.

[14]  Stephen M. Smith,et al.  Temporally-independent functional modes of spontaneous brain activity , 2012, Proceedings of the National Academy of Sciences.

[15]  J. Kurtzke Rating neurologic impairment in multiple sclerosis , 1983, Neurology.

[16]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[17]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[18]  Yufeng Zang,et al.  DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI , 2010 .

[19]  Massimo Filippi,et al.  Functional plasticity in MS , 2012, Neurology.

[20]  Daniel A. Handwerker,et al.  Periodic changes in fMRI connectivity , 2012, NeuroImage.

[21]  Dimitri Van De Ville,et al.  Classifying minimally disabled multiple sclerosis patients from resting state functional connectivity , 2012, NeuroImage.

[22]  Justin L. Vincent,et al.  Intrinsic functional architecture in the anaesthetized monkey brain , 2007, Nature.

[23]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[24]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[25]  M. Corbetta,et al.  Increased functional connectivity indicates the severity of cognitive impairment in multiple sclerosis , 2011, Proceedings of the National Academy of Sciences.

[26]  Jeffrey A. Cohen,et al.  Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria , 2011, Annals of neurology.

[27]  C. Fiebach,et al.  Predicting errors from reconfiguration patterns in human brain networks , 2012, Proceedings of the National Academy of Sciences.

[28]  Xu Chen,et al.  Dimensionality estimation for optimal detection of functional networks in BOLD fMRI data , 2011, NeuroImage.

[29]  D. Lehmann,et al.  Segmentation of brain electrical activity into microstates: model estimation and validation , 1995, IEEE Transactions on Biomedical Engineering.

[30]  Chaogan Yan,et al.  DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI , 2010, Front. Syst. Neurosci..

[31]  Catie Chang,et al.  Time–frequency dynamics of resting-state brain connectivity measured with fMRI , 2010, NeuroImage.

[32]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[33]  C. Poser,et al.  Diagnostic criteria for multiple sclerosis , 2001, Clinical Neurology and Neurosurgery.

[34]  Xiao Liu,et al.  EEG correlates of time-varying BOLD functional connectivity , 2013, NeuroImage.

[35]  Edward T. Bullmore,et al.  Broadband Criticality of Human Brain Network Synchronization , 2009, PLoS Comput. Biol..

[36]  Ravi S. Menon,et al.  Resting‐state networks show dynamic functional connectivity in awake humans and anesthetized macaques , 2013, Human brain mapping.

[37]  M Filippi,et al.  Imaging biomarkers in multiple sclerosis , 2010, Journal of magnetic resonance imaging : JMRI.

[38]  W. L. Benedict,et al.  Multiple Sclerosis , 2007, Journal - Michigan State Medical Society.

[39]  Dimitri Van De Ville,et al.  Impact of transient emotions on functional connectivity during subsequent resting state: A wavelet correlation approach , 2011, NeuroImage.

[40]  M. Filippi,et al.  Default-mode network dysfunction and cognitive impairment in progressive MS , 2010, Neurology.

[41]  N. Filippini,et al.  Group comparison of resting-state FMRI data using multi-subject ICA and dual regression , 2009, NeuroImage.

[42]  Martin A. Lindquist,et al.  Dynamic connectivity regression: Determining state-related changes in brain connectivity , 2012, NeuroImage.

[43]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[44]  C. Grady,et al.  Blood Oxygen Level-Dependent Signal Variability Is More than Just Noise , 2010, The Journal of Neuroscience.

[45]  David T. Jones,et al.  Non-Stationarity in the “Resting Brain’s” Modular Architecture , 2012, PloS one.

[46]  Vesa Kiviniemi,et al.  A Sliding Time-Window ICA Reveals Spatial Variability of the Default Mode Network in Time , 2011, Brain Connect..

[47]  Dimitri Van De Ville,et al.  BOLD correlates of EEG topography reveal rapid resting-state network dynamics , 2010, NeuroImage.

[48]  Yong He,et al.  Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches , 2011, NeuroImage.

[49]  Hans-Jochen Heinze,et al.  Association between heart rate variability and fluctuations in resting-state functional connectivity , 2013, NeuroImage.

[50]  Aapo Hyvärinen,et al.  Independent component analysis of nondeterministic fMRI signal sources , 2003, NeuroImage.

[51]  Stephen M Smith,et al.  Correspondence of the brain's functional architecture during activation and rest , 2009, Proceedings of the National Academy of Sciences.

[52]  F. Barkhof,et al.  Resting state networks change in clinically isolated syndrome. , 2010, Brain : a journal of neurology.

[53]  Scott T. Grafton,et al.  Dynamic reconfiguration of human brain networks during learning , 2010, Proceedings of the National Academy of Sciences.

[54]  J. Lurito,et al.  Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results. , 2002, Radiology.

[55]  S Makeig,et al.  Analysis of fMRI data by blind separation into independent spatial components , 1998, Human brain mapping.

[56]  Jean-Baptiste Poline,et al.  A group model for stable multi-subject ICA on fMRI datasets , 2010, NeuroImage.

[57]  Natasa Kovacevic,et al.  Increased Brain Signal Variability Accompanies Lower Behavioral Variability in Development , 2008, PLoS Comput. Biol..

[58]  S. Rombouts,et al.  Consistent resting-state networks across healthy subjects , 2006, Proceedings of the National Academy of Sciences.

[59]  Eswar Damaraju,et al.  Tracking whole-brain connectivity dynamics in the resting state. , 2014, Cerebral cortex.

[60]  S. Reingold,et al.  Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria” , 2005, Annals of neurology.

[61]  M. Raichle,et al.  Cortical network functional connectivity in the descent to sleep , 2009, Proceedings of the National Academy of Sciences.

[62]  John-Dylan Haynes,et al.  Multi-scale classification of disease using structural MRI and wavelet transform , 2012, NeuroImage.

[63]  Vince D. Calhoun,et al.  Decomposing the brain: components and modes, networks and nodes , 2012, Trends in Cognitive Sciences.

[64]  Karl J. Friston,et al.  Functional Connectivity: The Principal-Component Analysis of Large (PET) Data Sets , 1993, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[65]  M. Filippi,et al.  Large-scale neuronal network dysfunction in relapsing-remitting multiple sclerosis , 2012, Neurology.

[66]  Waqas Majeed,et al.  Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans , 2011, NeuroImage.

[67]  M. Greicius,et al.  Decoding subject-driven cognitive states with whole-brain connectivity patterns. , 2012, Cerebral cortex.

[68]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[69]  Jessica A. Turner,et al.  Behavioral Interpretations of Intrinsic Connectivity Networks , 2011, Journal of Cognitive Neuroscience.

[70]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[71]  Dajiang Zhu,et al.  Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients , 2014, Human brain mapping.

[72]  Robert Turner,et al.  Functional MRI of the brain. A Report on the SMRM/SMRI workshop held in arlington, virginia june 17–19, 1993 , 1993, Magnetic resonance in medicine.

[73]  J. V. Haxby,et al.  Spatial Pattern Analysis of Functional Brain Images Using Partial Least Squares , 1996, NeuroImage.