Geometric and functional organization of cortical circuits

Can neuronal morphology predict functional synaptic circuits? In the rat barrel cortex, 'barrels' and 'septa' delineate an orderly matrix of cortical columns. Using quantitative laser scanning photostimulation we measured the strength of excitatory projections from layer 4 (L4) and L5A to L2/3 pyramidal cells in barrel- and septum-related columns. From morphological reconstructions of excitatory neurons we computed the geometric circuit predicted by axodendritic overlap. Within most individual projections, functional inputs were predicted by geometry and a single scale factor, the synaptic strength per potential synapse. This factor, however, varied between projections and, in one case, even within a projection, up to 20-fold. Relationships between geometric overlap and synaptic strength thus depend on the laminar and columnar locations of both the pre- and postsynaptic neurons, even for neurons of the same type. A large plasticity potential appears to be incorporated into these circuits, allowing for functional 'tuning' with fixed axonal and dendritic arbor geometry.

[1]  A. M. Uttley The probability of neural connexions , 1955, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[2]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[3]  A. Peters,et al.  The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. I. General description , 1976, Journal of neurocytology.

[4]  A. Peters Projection of Lateral Geniculate Nucleus to Area 17 of the Rat Cerebral Cortex , 1976 .

[5]  A. Peters Thalamic input to the cerebral cortex , 1979, Trends in Neurosciences.

[6]  C. Gilbert Microcircuitry of the visual cortex. , 1983, Annual review of neuroscience.

[7]  R. Llinás,et al.  Morphological artifacts induced in intracellularly stained neurons by dehydration: Circumvention using rapid dimethyl sulfoxide clearing , 1985, Neuroscience.

[8]  Karl F. Jensen,et al.  Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex , 1988, Brain Research.

[9]  A. Burkhalter,et al.  Intrinsic connections of rat primary visual cortex: Laminar organization of axonal projections , 1989, The Journal of comparative neurology.

[10]  D. Simons,et al.  Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex , 1989, The Journal of comparative neurology.

[11]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[12]  E. Callaway,et al.  Photostimulation using caged glutamate reveals functional circuitry in living brain slices. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[13]  R. Lin,et al.  Thalamic afferents of the rat barrel cortex: a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. , 1993, Somatosensory & motor research.

[14]  M. Deschenes,et al.  Intracortical Axonal Projections of Lamina VI Cells of the Primary Somatosensory Cortex in the Rat: A Single-Cell Labeling Study , 1997, The Journal of Neuroscience.

[15]  A. Keller,et al.  Intrinsic circuitry and physiological properties of pyramidal neurons in rat barrel cortex , 1997, Experimental Brain Research.

[16]  J. Kaas,et al.  Intrathalamic connections: a new way to modulate cortical plasticity? , 1998, Nature Neuroscience.

[17]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.

[18]  F. Ebner,et al.  Barrels and septa: Separate circuits in rat barrel field cortex , 1999, The Journal of comparative neurology.

[19]  A. Keller,et al.  Neonatal whisker clipping alters intracortical, but not thalamocortical projections, in rat barrel cortex , 1999, The Journal of comparative neurology.

[20]  J. Lübke,et al.  Columnar Organization of Dendrites and Axons of Single and Synaptically Coupled Excitatory Spiny Neurons in Layer 4 of the Rat Barrel Cortex , 2000, The Journal of Neuroscience.

[21]  Edward M Callaway,et al.  Diversity and Cell Type Specificity of Local Excitatory Connections to Neurons in Layer 3B of Monkey Primary Visual Cortex , 2000, Neuron.

[22]  B. Sakmann,et al.  The Excitatory Neuronal Network of Rat Layer 4 Barrel Cortex , 2000, The Journal of Neuroscience.

[23]  E. Callaway,et al.  Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons , 2000, Nature Neuroscience.

[24]  Bernhard Hellwig,et al.  A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex , 2000, Biological Cybernetics.

[25]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[26]  B Sakmann,et al.  Functionally Independent Columns of Rat Somatosensory Barrel Cortex Revealed with Voltage-Sensitive Dye Imaging , 2001, The Journal of Neuroscience.

[27]  E. Callaway,et al.  Two Functional Channels from Primary Visual Cortex to Dorsal Visual Cortical Areas , 2001, Science.

[28]  M Canepari,et al.  Photochemical and pharmacological evaluation of 7-nitroindolinyl-and 4-methoxy-7-nitroindolinyl-amino acids as novel, fast caged neurotransmitters , 2001, Journal of Neuroscience Methods.

[29]  R. Kötter,et al.  Layer-Specific Intracolumnar and Transcolumnar Functional Connectivity of Layer V Pyramidal Cells in Rat Barrel Cortex , 2001, The Journal of Neuroscience.

[30]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[31]  Eric I. Knudsen,et al.  Incremental training increases the plasticity of the auditory space map in adult barn owls , 2002, Nature.

[32]  D. Chklovskii,et al.  Geometry and Structural Plasticity of Synaptic Connectivity , 2002, Neuron.

[33]  K. Rockland,et al.  Honeycomb-Like Mosaic at the Border of Layers 1 and 2 in the Cerebral Cortex , 2003, The Journal of Neuroscience.

[34]  B. Sakmann,et al.  Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex , 2003, The Journal of physiology.

[35]  R. Kötter,et al.  Cell Type-Specific Circuits of Cortical Layer IV Spiny Neurons , 2003, The Journal of Neuroscience.

[36]  Karel Svoboda,et al.  Circuit Analysis of Experience-Dependent Plasticity in the Developing Rat Barrel Cortex , 2003, Neuron.

[37]  Henry Markram,et al.  Deriving physical connectivity from neuronal morphology , 2003, Biological Cybernetics.

[38]  Daniel E Feldman,et al.  Development of Columnar Topography in the Excitatory Layer 4 to Layer 2/3 Projection in Rat Barrel Cortex , 2003, The Journal of Neuroscience.

[39]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[40]  D. Chklovskii,et al.  Class-Specific Features of Neuronal Wiring , 2004, Neuron.

[41]  Bert Sakmann,et al.  Sub‐ and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex , 2004, The Journal of physiology.

[42]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[43]  Karl Zilles,et al.  Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. , 2004, Cerebral cortex.

[44]  Karel Svoboda,et al.  Precise Development of Functional and Anatomical Columns in the Neocortex , 2004, Neuron.

[45]  T. Kosaka,et al.  Quantitative analysis of neurons and glial cells in the rat somatosensory cortex, with special reference to GABAergic neurons and parvalbumin-containing neurons , 2004, Experimental Brain Research.

[46]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[47]  G. Shepherd,et al.  Laminar and Columnar Organization of Ascending Excitatory Projections to Layer 2/3 Pyramidal Neurons in Rat Barrel Cortex , 2005, The Journal of Neuroscience.

[48]  E. Callaway,et al.  Excitatory cortical neurons form fine-scale functional networks , 2005, Nature.

[49]  B. Goossens,et al.  Aerial Surveys Give New Estimates for Orangutans in Sabah, Malaysia , 2004, PLoS biology.

[50]  Ton Bisseling,et al.  Biology by Numbers—Introducing Quantitation into Life Science Education , 2005, PLoS biology.

[51]  H. Markram,et al.  The neocortical microcircuit as a tabula rasa. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[52]  R. K. Simpson Nature Neuroscience , 2022 .