Parallel Simultaneous Alignment of Multiple Range Images on PC Cluster

This paper describes a method for parallel alignment of multiple range images. For aligning a large number of range images simultaneously, we developed the parallel method that improves the time and memory performances of the process. Since the computation between two range images can be preformed independently, the computation of each correspondence pair of range images is assigned to each processor. By rejecting redundant dependencies, our method makes it possible to accelerate computation time and reduce the amount of memory used on each node. The graph partitioning algorithms are applied to this problem in order to obtain an optimal solution for pair assignment. The method was tested on a 16 processor PC cluster, where it demonstrated the high extendibility and the performance improvement in time and memory. Keyword Range Image,Alignment,Parallel Computation,PC Cluster

[1]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[2]  Charles M. Fiduccia,et al.  A linear-time heuristic for improving network partitions , 1988, 25 years of DAC.

[3]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[4]  Brian Kernighan,et al.  An efficient heuristic for partitioning graphs , 1970 .

[5]  Takeo Kanade,et al.  Real-time 3-D pose estimation using a high-speed range sensor , 1993, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[6]  Michael A. Greenspan,et al.  The parallel iterative closest point algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[7]  Gaetano Borriello,et al.  An evaluation of bipartitioning techniques , 1995, Proceedings Sixteenth Conference on Advanced Research in VLSI.

[8]  Marc Levoy,et al.  The digital Michelangelo project , 1999, Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).

[9]  Martin D. Levine,et al.  Registering Multiview Range Data to Create 3D Computer Objects , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Robert Bergevin,et al.  Towards a General Multi-View Registration Technique , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Katsushi Ikeuchi,et al.  Modeling from Reality , 1998 .

[12]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[13]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Andrew B. Kahng,et al.  New spectral methods for ratio cut partitioning and clustering , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[15]  Francis Schmitt,et al.  Fast global registration of 3D sampled surfaces using a multi-z-buffer technique , 1999, Image Vis. Comput..

[16]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[17]  Peter Johannes Neugebauer,et al.  Reconstruction of Real-World Objects via Simultaneous Registration and Robust Combination of Multiple Range Images , 1997, Int. J. Shape Model..

[18]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[19]  Katsuhiko Sakaue,et al.  Registration and integration of multiple range images for 3-D model construction , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[20]  R. M. Mattheyses,et al.  A Linear-Time Heuristic for Improving Network Partitions , 1982, 19th Design Automation Conference.

[21]  Gérard G. Medioni,et al.  Object modeling by registration of multiple range images , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[22]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[23]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .