Simplification of recourse models by modification of recourse data

We consider modification of the recourse data, consisting of the second-stage parameters and the underlying distribution, as an approximation technique for solving two-stage recourse problems. This approach is applied to several specific classes of recourse problems; in each case, the resulting recourse problem is much easier to solve. Modification of recourse data is shown to be the common principle behind the approximations which were introduced in previous publications.

[1]  Maarten H. van der Vlerk,et al.  Stochastic integer programming:General models and algorithms , 1999, Ann. Oper. Res..

[2]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[3]  Leen Stougie,et al.  On the convex hull of the simple integer recourse objective function , 1995, Ann. Oper. Res..

[4]  Maarten H. van der Vlerk,et al.  On multiple simple recourse models , 2005, Math. Methods Oper. Res..

[5]  Leen Stougie,et al.  On the Convex Hull of the Composition of a Separable and a Linear Function , 1995 .

[6]  Leen Stougie,et al.  Solving stochastic programs with complete integer recourse , 1998 .

[7]  Leen Stougie,et al.  An algorithm for the construction of convex hulls in simple integer recourse programming , 1996, Ann. Oper. Res..

[8]  Maarten H. van der Vlerk Stochastic Programming with Simple Integer Recourse , 2001, Encyclopedia of Optimization.

[9]  Singiresu S. Rao,et al.  Optimization Theory and Applications , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  W. K. Haneveld Duality in Stochastic Linear and Dynamic Programming , 1986 .

[11]  R. Schultz,et al.  Solving stochastic programs with integer recourse by enumeration: a framework using Gro¨bner basis reductions , 1998 .

[12]  Andrzej Ruszczynski,et al.  On Optimal Allocation of Indivisibles Under Uncertainty , 1998, Oper. Res..

[13]  Maarten H. van der Vlerk,et al.  Convex approximations for complete integer recourse models , 2004, Math. Program..

[14]  Leen Stougie,et al.  Convex approximations for simple integer recourse models by perturbing the underlying distributions. , 1997 .

[15]  Peter Kall,et al.  SLP-IOR: An interactive model management system for stochastic linear programs , 1996, Math. Program..

[16]  R. Weiner Lecture Notes in Economics and Mathematical Systems , 1985 .

[17]  Gilbert Laporte,et al.  The integer L-shaped method for stochastic integer programs with complete recourse , 1993, Oper. Res. Lett..

[18]  W. K. Klein Haneveld,et al.  Convex simple integer recourse problems , 1997 .

[19]  János Mayer,et al.  Stochastic Linear Programming Algorithms: A Comparison Based on a Model Management System , 1998 .