Subcortical evoked activity and motor enhancement in Parkinson's disease

[1]  J.L.O'L.,et al.  Chemical Pathology of the Nervous System (Proceedings of the Third International Neurochemical Symposium held at Strasbourg, 1958) , 1962, Neurology.

[2]  P. Brown,et al.  A block to pre-prepared movement in gait freezing, relieved by pedunculopontine nucleus stimulation , 2011, Brain : a journal of neurology.

[3]  A. Angel,et al.  Input-Output Relations in Simple Reaction Time Experiments , 1973, The Quarterly journal of experimental psychology.

[4]  S. Hackley The speeding of voluntary reaction by a warning signal. , 2009, Psychophysiology.

[5]  M. Onofrj,et al.  Protracted benefit from paradoxical kinesia in typical and atypical parkinsonisms , 2010, Neurological Sciences.

[6]  Michel Desmurget,et al.  Functional anatomy of motor urgency , 2007, NeuroImage.

[7]  R. Daroff Paradoxical kinesia , 2008, Movement disorders : official journal of the Movement Disorder Society.

[8]  R S SCHWAB,et al.  Akinesia in Parkinson's disease , 1959, Neurology.

[9]  D Curran-Everett,et al.  Multiple comparisons: philosophies and illustrations. , 2000, American journal of physiology. Regulatory, integrative and comparative physiology.

[10]  C. Wernicke,et al.  Grundriss der Psychiatrie in klinischen Vorlesungen , 1894 .

[11]  Tipu Z. Aziz,et al.  Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei , 2007, NeuroImage.

[12]  P. Brown,et al.  Improvements in rate of development and magnitude of force with intense auditory stimuli in patients with Parkinson’s disease , 2011, The European journal of neuroscience.

[13]  Elaine Ewing Fess,et al.  Clinical assessment Recommendations , 1981 .

[14]  Alexander L Green,et al.  Subthalamic nucleus activity optimizes maximal effort motor responses in Parkinson's disease. , 2012, Brain : a journal of neurology.

[15]  E. Garcia-Rill,et al.  Auditory input to the pedunculopontine nucleus: II. Unit responses , 1995, Brain Research Bulletin.

[16]  D. Giurintano,et al.  Scalability of the Muscular Action in a Parametric 3D Model of the Index Finger , 2007, Annals of Biomedical Engineering.

[17]  E. Tolosa,et al.  Effects of a startling acoustic stimulus on reaction time in different parkinsonian syndromes , 1998, Neurology.

[18]  E. Garcia-Rill,et al.  Neurochemical modulation of the P13 midlatency auditory evoked potential in the rat , 1999, Neuroscience.

[19]  J. Bolam,et al.  Cholinergic, GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  S Cerutti,et al.  300-Hz subthalamic oscillations in Parkinson's disease. , 2003, Brain : a journal of neurology.

[21]  S. Hackley,et al.  Accessory Stimulus Effects on Response Selection: Does Arousal Speed Decision Making? , 1999, Journal of Cognitive Neuroscience.

[22]  Peter Brown,et al.  Scaling of Movement Is Related to Pallidal γ Oscillations in Patients with Dystonia , 2012, The Journal of Neuroscience.

[23]  E. Garcia-Rill,et al.  The pedunculopontine tegmental nucleus: from basic neuroscience to neurosurgical applications , 2011, Journal of Neural Transmission.

[24]  Karl J. Friston,et al.  Mechanisms of evoked and induced responses in MEG/EEG , 2006, NeuroImage.

[25]  K. Engels,et al.  [Reaction time]. , 2021, Deutsche medizinische Wochenschrift.

[26]  E. Garcia-Rill,et al.  A middle-latency auditory-evoked potential in the rat , 1995, Brain Research Bulletin.

[27]  M. Posner Measuring Alertness , 2008, Annals of the New York Academy of Sciences.

[28]  Tipu Z. Aziz,et al.  Oscillatory activity in the subthalamic nucleus during arm reaching in Parkinson's disease , 2012, Experimental Neurology.

[29]  R. Erwin,et al.  Midlatency auditory evoked responses: differential effects of sleep in the human. , 1986, Electroencephalography and clinical neurophysiology.

[30]  Alfons Schnitzler,et al.  High frequency oscillations in the subthalamic nucleus: A neurophysiological marker of the motor state in Parkinson's disease , 2011, Experimental Neurology.

[31]  Scott T. Grafton,et al.  Motor subcircuits mediating the control of movement extent and speed. , 2003, Journal of neurophysiology.

[32]  S. Gill,et al.  Outcomes from stimulation of the caudal zona incerta and pedunculopontine nucleus in patients with Parkinson's disease , 2011, British journal of neurosurgery.

[33]  Michael Erb,et al.  Separation of phasic arousal and expectancy effects in a speeded reaction time task via fMRI. , 2009, Psychophysiology.

[34]  Andrea A. Kühn,et al.  Gamma oscillations in the human basal ganglia , 2013, Experimental Neurology.

[35]  M. Hallett,et al.  A physiological mechanism of bradykinesia. , 1980, Brain : a journal of neurology.

[36]  Britne A. Shabbott,et al.  Motor control abnormalities in Parkinson's disease. , 2012, Cold Spring Harbor perspectives in medicine.

[37]  C. Hammond,et al.  Anatomical and electrophysiological studies on the reciprocal projections between the subthalamic nucleus and nucleus tegmenti pedunculopontinus in the rat , 1983, Neuroscience.

[38]  M. Pessiglione,et al.  Get Aroused and Be Stronger: Emotional Facilitation of Physical Effort in the Human Brain , 2009, The Journal of Neuroscience.

[39]  Suresh D Muthukumaraswamy,et al.  Functional properties of human primary motor cortex gamma oscillations. , 2010, Journal of neurophysiology.

[40]  R. Schwab,et al.  Effects of mood, motivation, stress and alertness on the performance in Parkinson's disease. , 1965, Psychiatria et neurologia.

[41]  B. Jones Modulation of Cortical Activation and Behavioral Arousal by Cholinergic and Orexinergic Systems , 2008, Annals of the New York Academy of Sciences.

[42]  J. Krakauer,et al.  Why Don't We Move Faster? Parkinson's Disease, Movement Vigor, and Implicit Motivation , 2007, The Journal of Neuroscience.

[43]  J. Botwinick,et al.  Premotor and motor components of reaction time. , 1966, Journal of experimental psychology.

[44]  A. Sanders Towards a model of stress and human performance. , 1983, Acta psychologica.

[45]  K. Flowers,et al.  Ballistic and corrective movements on an aiming task , 1975, Neurology.

[46]  M. Desmurget,et al.  Basal ganglia contributions to motor control: a vigorous tutor , 2010, Current Opinion in Neurobiology.

[47]  M. Casanova,et al.  Early-stage visual processing abnormalities in high-functioning autism spectrum disorder (ASD) , 2010, Translational neuroscience.

[48]  R. Dolan,et al.  How the Brain Translates Money into Force: A Neuroimaging Study of Subliminal Motivation , 2007, Science.

[49]  Scott T. Grafton,et al.  Human Basal Ganglia and the Dynamic Control of Force during On-Line Corrections , 2011, The Journal of Neuroscience.

[50]  P. Brown,et al.  Doing better than your best: loud auditory stimulation yields improvements in maximal voluntary force , 2010, Experimental Brain Research.

[51]  E. Garcia-Rill,et al.  Reduced sensory gating of the P1 potential in rape victims and combat veterans with posttraumatic stress disorder , 1999, Depression and anxiety.

[52]  G. Moruzzi,et al.  Brain stem reticular formation and activation of the EEG. , 1949, Electroencephalography and clinical neurophysiology.

[53]  The concept of akinesia. , 1975, Psychological medicine.

[54]  Thomas Foltynie,et al.  Surgical management of Parkinson’s disease , 2010, Expert review of neurotherapeutics.

[55]  Alexander L Green,et al.  Subthalamic Nucleus Local Field Potential Activity Helps Encode Motor Effort Rather Than Force in Parkinsonism , 2015, The Journal of Neuroscience.

[56]  V. Weerdesteyn,et al.  Reduced StartReact effect and freezing of gait in Parkinson’s disease: two of a kind? , 2014, Journal of Neurology.

[57]  Michel Desmurget,et al.  “Paradoxical Kinesis” is not a Hallmark of Parkinson's disease but a general property of the motor system , 2006, Movement disorders : official journal of the Movement Disorder Society.

[58]  J. Buchwald,et al.  Midlatency auditory evoked responses: differential effects of sleep in the cat. , 1986, Electroencephalography and clinical neurophysiology.

[59]  Andrea A. Kühn,et al.  Subthalamic gamma activity in patients with Parkinson's disease , 2006, Experimental Neurology.

[60]  Eric-Jan Wagenmakers,et al.  The Effects of Accessory Stimuli on Information Processing: Evidence from Electrophysiology and a Diffusion Model Analysis , 2009, Journal of Cognitive Neuroscience.

[61]  J. Paul Bolam,et al.  Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? , 2004, Trends in Neurosciences.