Excitatory neuronal connectivity in the barrel cortex

Neocortical areas are believed to be organized into vertical modules, the cortical columns, and the horizontal layers 1–6. In the somatosensory barrel cortex these columns are defined by the readily discernible barrel structure in layer 4. Information processing in the neocortex occurs along vertical and horizontal axes, thereby linking individual barrel-related columns via axons running through the different cortical layers of the barrel cortex. Long-range signaling occurs within the neocortical layers but also through axons projecting through the white matter to other neocortical areas and subcortical brain regions. Because of the ease of identification of barrel-related columns, the rodent barrel cortex has become a prototypical system to study the interactions between different neuronal connections within a sensory cortical area and between this area and other cortical as well subcortical regions. Such interactions will be discussed specifically for the feed-forward and feedback loops between the somatosensory and the somatomotor cortices as well as the different thalamic nuclei. In addition, recent advances concerning the morphological characteristics of excitatory neurons and their impact on the synaptic connectivity patterns and signaling properties of neuronal microcircuits in the whisker-related somatosensory cortex will be reviewed. In this context, their relationship between the structural properties of barrel-related columns and their function as a module in vertical synaptic signaling in the whisker-related cortical areas will be discussed.

[1]  Dk Murage Circuit analysis I , 2014 .

[2]  F. Helmchen,et al.  Barrel cortex function , 2013, Progress in Neurobiology.

[3]  E. Kuramoto,et al.  A morphological analysis of thalamocortical axon fibers of rat posterior thalamic nuclei: a single neuron tracing study with viral vectors. , 2012, Cerebral cortex.

[4]  E. Welker,et al.  Intracortical connectivity of layer VI pyramidal neurons in the somatosensory cortex of normal and barrelless mice , 2012, The European journal of neuroscience.

[5]  Manuel Marx,et al.  Improved biocytin labeling and neuronal 3D reconstruction , 2012, Nature Protocols.

[6]  H. S. Meyer,et al.  Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex , 2011, Cerebral cortex.

[7]  Takahiro Furuta,et al.  Local Connections of Excitatory Neurons to Corticothalamic Neurons in the Rat Barrel Cortex , 2011, The Journal of Neuroscience.

[8]  Karel Svoboda,et al.  Long-Range Neuronal Circuits Underlying the Interaction between Sensory and Motor Cortex , 2011, Neuron.

[9]  Cullen B. Owens,et al.  Integrative Neuroscience Review Article Anatomical Pathways Involved in Generating and Sensing Rhythmic Whisker Movements , 2022 .

[10]  Arno C. Schmitt,et al.  Inhibitory interneurons in a cortical column form hot zones of inhibition in layers 2 and 5A , 2011, Proceedings of the National Academy of Sciences.

[11]  Romain Brette,et al.  Late Emergence of the Vibrissa Direction Selectivity Map in the Rat Barrel Cortex , 2011, The Journal of Neuroscience.

[12]  Y. Kubota,et al.  Highly Differentiated Projection-Specific Cortical Subnetworks , 2011, The Journal of Neuroscience.

[13]  Takahiro Furuta,et al.  Anisotropic Distribution of Thalamocortical Boutons in Barrels , 2011, The Journal of Neuroscience.

[14]  Randy M. Bruno,et al.  Effects and Mechanisms of Wakefulness on Local Cortical Networks , 2011, Neuron.

[15]  Thomas K. Berger,et al.  A synaptic organizing principle for cortical neuronal groups , 2011, Proceedings of the National Academy of Sciences.

[16]  B. Sakmann,et al.  Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch , 2011, Proceedings of the National Academy of Sciences.

[17]  R. Guillery,et al.  Branched thalamic afferents: What are the messages that they relay to the cortex? , 2011, Brain Research Reviews.

[18]  Bryan M. Hooks,et al.  Laminar Analysis of Excitatory Local Circuits in Vibrissal Motor and Sensory Cortical Areas , 2011, PLoS biology.

[19]  Y. Kawaguchi,et al.  Cell diversity and connection specificity between callosal projection neurons in the frontal cortex , 2010, Neuroscience Research.

[20]  K. Alloway,et al.  Functional Specificity of Claustrum Connections in the Rat: Interhemispheric Communication between Specific Parts of Motor Cortex , 2010, The Journal of Neuroscience.

[21]  Celine Mateo,et al.  Motor Control by Sensory Cortex , 2010, Science.

[22]  Jochen Staiger,et al.  S1 laminar specialization , 2010, Scholarpedia.

[23]  Jeremy D. Cohen,et al.  Behavioral state dependency of neural activity and sensory (whisker) responses in superior colliculus. , 2010, Journal of neurophysiology.

[24]  Chen-Tung Yen,et al.  Distribution of large terminal inputs from the primary and secondary somatosensory cortices to the dorsal thalamus in the rodent , 2010, The Journal of comparative neurology.

[25]  H. S. Meyer,et al.  Number and Laminar Distribution of Neurons in a Thalamocortical Projection Column of Rat Vibrissal Cortex , 2010, Cerebral cortex.

[26]  H. S. Meyer,et al.  Cell Type–Specific Thalamic Innervation in a Column of Rat Vibrissal Cortex , 2010, Cerebral cortex.

[27]  C. Petersen,et al.  Long‐range connectivity of mouse primary somatosensory barrel cortex , 2010, The European journal of neuroscience.

[28]  B. Sakmann,et al.  Dimensions of a Projection Column and Architecture of VPM and POm Axons in Rat Vibrissal Cortex , 2010, Cerebral cortex.

[29]  Taro Kiritani,et al.  Sublayer-specific microcircuits of corticospinal and corticostriatal neurons in motor cortex , 2010, Nature Neuroscience.

[30]  H. Adesnik,et al.  Lateral competition for cortical space by layer-specific horizontal circuits , 2010, Nature.

[31]  Hanno S Meyer,et al.  Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. , 2010, Cerebral cortex.

[32]  Karel Svoboda,et al.  The Functional Properties of Barrel Cortex Neurons Projecting to the Primary Motor Cortex , 2010, The Journal of Neuroscience.

[33]  Kathleen S. Rockland,et al.  Five Points on Columns , 2010, Front. Neuroanat..

[34]  Kevan A. C. Martin,et al.  Whose Cortical Column Would that Be? , 2010, Front. Neuroanat..

[35]  Arto V. Nurmikko,et al.  Pathway-Specific Feedforward Circuits between Thalamus and Neocortex Revealed by Selective Optical Stimulation of Axons , 2010, Neuron.

[36]  J. C. Nelson,et al.  Quantal Analysis Reveals a Functional Correlation between Presynaptic and Postsynaptic Efficacy in Excitatory Connections from Rat Neocortex , 2010, The Journal of Neuroscience.

[37]  Alex M. Thomson,et al.  Neocortical Layer 6, A Review , 2010, Front. Neuroanat..

[38]  S. Sherman,et al.  The corticothalamocortical circuit drives higher-order cortex in the mouse , 2009, Nature Neuroscience.

[39]  J. Lübke,et al.  Developmental changes in synaptic transmission between layer 4 spiny neurons of rat barrel cortex , 2010 .

[40]  M. Häusser,et al.  Electrophysiology in the age of light , 2009, Nature.

[41]  F. Clascá,et al.  Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. , 2009, Cerebral cortex.

[42]  B. Sakmann,et al.  Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific , 2009, Proceedings of the National Academy of Sciences.

[43]  S. Hestrin,et al.  Cell-type identity: a key to unlocking the function of neocortical circuits , 2009, Current Opinion in Neurobiology.

[44]  D. Feldmeyer,et al.  Cholinergic filtering in the recurrent excitatory microcircuit of cortical layer 4 , 2009, Proceedings of the National Academy of Sciences.

[45]  Shubhodeep Chakrabarti,et al.  Differential response patterns in the si barrel and septal compartments during mechanical whisker stimulation. , 2009, Journal of neurophysiology.

[46]  Martin Deschenes,et al.  Vibrissal afferents from trigeminus to cortices , 2009, Scholarpedia.

[47]  Takahiro Furuta,et al.  Septal neurons in barrel cortex derive their receptive field input from the lemniscal pathway , 2009, Neuroscience Research.

[48]  Damian J. Wallace,et al.  Sensory Experience Alters Specific Branches of Individual Corticocortical Axons during Development , 2009, The Journal of Neuroscience.

[49]  D. Kleinfeld,et al.  Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system , 2009, Nature Neuroscience.

[50]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[51]  J. Brumberg,et al.  Morphological heterogeneity of layer VI neurons in mouse barrel cortex , 2009, The Journal of comparative neurology.

[52]  L. Roux,et al.  Glutamatergic nonpyramidal neurons from neocortical layer VI and their comparison with pyramidal and spiny stellate neurons. , 2009, Journal of neurophysiology.

[53]  C. Petersen,et al.  The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary Somatosensory Cortex , 2009, Neuron.

[54]  S. Hestrin,et al.  Intracortical circuits of pyramidal neurons reflect their long-range axonal targets , 2009, Nature.

[55]  Jeremy D. Cohen,et al.  Vibrissa Sensation in Superior Colliculus: Wide-Field Sensitivity and State-Dependent Cortical Feedback , 2008, The Journal of Neuroscience.

[56]  O. Ohana,et al.  Inter- and intralaminar subcircuits of excitatory and inhibitory neurons in layer 6a of the rat barrel cortex. , 2008, Journal of neurophysiology.

[57]  Bert Sakmann,et al.  Driver or Coincidence Detector: Modal Switch of a Corticothalamic Giant Synapse Controlled by Spontaneous Activity and Short-Term Depression , 2008, The Journal of Neuroscience.

[58]  Kevin D Alloway,et al.  Contralateral corticothalamic projections from MI whisker cortex: Potential route for modulating hemispheric interactions , 2008, The Journal of comparative neurology.

[59]  S. Nelson,et al.  The Fezf2–Ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex , 2008, Proceedings of the National Academy of Sciences.

[60]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[61]  Shubhodeep Chakrabarti,et al.  Running Headline: Sensorimotor Integration in MI , 2022 .

[62]  Martin Deschênes,et al.  Vibrissal Responses of Thalamic Cells That Project to the Septal Columns of the Barrel Cortex and to the Second Somatosensory Area , 2008, The Journal of Neuroscience.

[63]  Kevin D Alloway,et al.  Information processing streams in rodent barrel cortex: the differential functions of barrel and septal circuits. , 2008, Cerebral cortex.

[64]  Randy M Bruno,et al.  Subcolumnar dendritic and axonal organization of spiny stellate and star pyramid neurons within a barrel in rat somatosensory cortex. , 2008, Cerebral cortex.

[65]  Moritz Helmstaedter,et al.  Monosynaptic connections between pairs of L5A pyramidal neurons in columns of juvenile rat somatosensory cortex. , 2008, Cerebral cortex.

[66]  S. Nelson,et al.  The Fezf 2 – Ctip 2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex , 2008 .

[67]  F. Haiss,et al.  Spatiotemporal Dynamics of Cortical Sensorimotor Integration in Behaving Mice , 2007, Neuron.

[68]  S. Nelson,et al.  Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. , 2007, Journal of neurophysiology.

[69]  Edward M. Callaway,et al.  Retrograde Tracing with Recombinant Rabies Virus Reveals Correlations Between Projection Targets and Dendritic Architecture in Layer 5 of Mouse Barrel Cortex , 2007, Frontiers in neural circuits.

[70]  Miguel A L Nicolelis,et al.  Processing of tactile information by the hippocampus , 2007, Proceedings of the National Academy of Sciences.

[71]  Martin Deschênes,et al.  A New Thalamic Pathway of Vibrissal Information Modulated by the Motor Cortex , 2007, The Journal of Neuroscience.

[72]  Idan Segev,et al.  Modeling a layer 4-to-layer 2/3 module of a single column in rat neocortex: Interweaving in vitro and in vivo experimental observations , 2007, Proceedings of the National Academy of Sciences.

[73]  H. Markram,et al.  Morphological, electrophysiological, and synaptic properties of corticocallosal pyramidal cells in the neonatal rat neocortex. , 2007, Cerebral cortex.

[74]  S. Shipp Structure and function of the cerebral cortex , 2007, Current Biology.

[75]  J. Lübke,et al.  Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex , 2007, Brain Structure and Function.

[76]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[77]  Cpj de Kock,et al.  Layer‐ and cell‐type‐specific suprathreshold stimulus representation in rat primary somatosensory cortex , 2007, The Journal of physiology.

[78]  S. Cruikshank,et al.  Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex , 2007, Nature Neuroscience.

[79]  Claire E. J. Cheetham,et al.  Sensory Experience Alters Cortical Connectivity and Synaptic Function Site Specifically , 2007, The Journal of Neuroscience.

[80]  K. Deisseroth,et al.  optical technologies for probing neural signals and systems , 2007 .

[81]  K. Deisseroth,et al.  Circuit-breakers: optical technologies for probing neural signals and systems , 2007, Nature Reviews Neuroscience.

[82]  Johannes J. Letzkus,et al.  Cortical feed-forward networks for binding different streams of sensory information , 2006, Nature Neuroscience.

[83]  K. Svoboda,et al.  Interdigitated Paralemniscal and Lemniscal Pathways in the Mouse Barrel Cortex , 2006, PLoS biology.

[84]  Shubhodeep Chakrabarti,et al.  Topography of cortical projections to the dorsolateral neostriatum in rats: Multiple overlapping sensorimotor pathways , 2006, The Journal of comparative neurology.

[85]  Shubhodeep Chakrabarti,et al.  Differential origin of projections from SI barrel cortex to the whisker representations in SII and MI , 2006, The Journal of comparative neurology.

[86]  S. Nelson,et al.  Probing the transcriptome of neuronal cell types , 2006, Current Opinion in Neurobiology.

[87]  J. Lübke,et al.  Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats , 2006, The Journal of physiology.

[88]  F. Helmchen,et al.  Background Synaptic Activity Is Sparse in Neocortex , 2006, The Journal of Neuroscience.

[89]  B. Sakmann,et al.  Cortex Is Driven by Weak but Synchronously Active Thalamocortical Synapses , 2006, Science.

[90]  Z. Molnár,et al.  Towards the classification of subpopulations of layer V pyramidal projection neurons , 2006, Neuroscience Research.

[91]  D. McCormick,et al.  Neocortical Network Activity In Vivo Is Generated through a Dynamic Balance of Excitation and Inhibition , 2006, The Journal of Neuroscience.

[92]  Y. Kawaguchi,et al.  Recurrent Connection Patterns of Corticostriatal Pyramidal Cells in Frontal Cortex , 2006, The Journal of Neuroscience.

[93]  E. Ahissar,et al.  Parallel Thalamic Pathways for Whisking and Touch Signals in the Rat , 2006, PLoS biology.

[94]  M. Andermann,et al.  A somatotopic map of vibrissa motion direction within a barrel column , 2006, Nature Neuroscience.

[95]  R Kötter,et al.  Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer va in the primary somatosensory cortex. , 2006, Cerebral cortex.

[96]  Edward M Callaway,et al.  Development of layer‐specific axonal arborizations in mouse primary somatosensory cortex , 2006, The Journal of comparative neurology.

[97]  F. Ebner,et al.  Chronic suppression of activity in barrel field cortex downregulates sensory responses in contralateral barrel field cortex. , 2005, Journal of neurophysiology.

[98]  P. Land,et al.  Subbarrel domains in rat somatosensory (S1) cortex , 2005, The Journal of comparative neurology.

[99]  Alex M Thomson,et al.  Excitatory connections made by presynaptic cortico-cortical pyramidal cells in layer 6 of the neocortex. , 2005, Cerebral cortex.

[100]  Martin Deschênes,et al.  Feedforward Inhibitory Control of Sensory Information in Higher-Order Thalamic Nuclei , 2005, The Journal of Neuroscience.

[101]  J. Hutsler,et al.  Comparative analysis of cortical layering and supragranular layer enlargement in rodent carnivore and primate species , 2005, Brain Research.

[102]  Kevin D Alloway,et al.  Functional circuits mediating sensorimotor integration: Quantitative comparisons of projections from rodent barrel cortex to primary motor cortex, neostriatum, superior colliculus, and the pons , 2005, The Journal of comparative neurology.

[103]  G. Shepherd,et al.  Laminar and Columnar Organization of Ascending Excitatory Projections to Layer 2/3 Pyramidal Neurons in Rat Barrel Cortex , 2005, The Journal of Neuroscience.

[104]  G. Shepherd,et al.  Geometric and functional organization of cortical circuits , 2005, Nature Neuroscience.

[105]  Daniel L Adams,et al.  The cortical column: a structure without a function , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[106]  Bert Sakmann,et al.  Monosynaptic Connections between Pairs of Spiny Stellate Cells in Layer 4 and Pyramidal Cells in Layer 5A Indicate That Lemniscal and Paralemniscal Afferent Pathways Converge in the Infragranular Somatosensory Cortex , 2005, The Journal of Neuroscience.

[107]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[108]  S. Sherman,et al.  Thalamic relays and cortical functioning. , 2005, Progress in brain research.

[109]  K. Alloway,et al.  Septal columns in rodent barrel cortex: Functional circuits for modulating whisking behavior , 2004, The Journal of comparative neurology.

[110]  T. Leergaard,et al.  Three‐dimensional topography of corticopontine projections from rat sensorimotor cortex: Comparisons with corticostriatal projections reveal diverse integrative organization , 2004, The Journal of comparative neurology.

[111]  Christian Stricker,et al.  Functional connectivity in layer IV local excitatory circuits of rat somatosensory cortex. , 2004, Journal of neurophysiology.

[112]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[113]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[114]  Karel Svoboda,et al.  Precise Development of Functional and Anatomical Columns in the Neocortex , 2004, Neuron.

[115]  Karl Zilles,et al.  Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. , 2004, Cerebral cortex.

[116]  Bert Sakmann,et al.  Sub‐ and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex , 2004, The Journal of physiology.

[117]  B. Sakmann,et al.  Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex , 2004, Nature.

[118]  J. Zhu,et al.  Rapid Arrival and Integration of Ascending Sensory Information in Layer 1 Nonpyramidal Neurons and Tuft Dendrites of Layer 5 Pyramidal Neurons of the Neocortex , 2004, The Journal of Neuroscience.

[119]  M. Marín‐padilla Dual origin of the mammalian neocortex and evolution of the cortical plate , 1978, Anatomy and Embryology.

[120]  F. Hajdu,et al.  Identification of the golgi picture of the layer VI cortico-geniculate projection neurons , 1975, Experimental Brain Research.

[121]  E. Welker,et al.  Organization of feedback and feedforward projections of the barrel cortex: a PHA-L study in the mouse , 2004, Experimental Brain Research.

[122]  A. Keller,et al.  Input-output organization of the rat vibrissal motor cortex , 2004, Experimental Brain Research.

[123]  E. Welker,et al.  Organization of the projections from barrel cortex to thalamus in mice studied with Phaseolus vulgaris-leucoagglutinin and HRP , 2004, Experimental Brain Research.

[124]  R. Izraeli,et al.  Vibrissal motor cortex in the rat: connections with the barrel field , 2004, Experimental Brain Research.

[125]  E. Welker,et al.  Ultrastructure of giant and small thalamic terminals of cortical origin: a study of the projections from the barrel cortex in mice using Phaseolus vulgaris leuco-agglutinin (PHA-L) , 2004, Experimental Brain Research.

[126]  T. Kosaka,et al.  Quantitative analysis of neurons and glial cells in the rat somatosensory cortex, with special reference to GABAergic neurons and parvalbumin-containing neurons , 2004, Experimental Brain Research.

[127]  R. Silver,et al.  High-Probability Uniquantal Transmission at Excitatory Synapses in Barrel Cortex , 2003, Science.

[128]  J. Hoover,et al.  Sensorimotor corticocortical projections from rat barrel cortex have an anisotropic organization that facilitates integration of inputs from whiskers in the same row , 2003, The Journal of comparative neurology.

[129]  B. Connors,et al.  Two dynamically distinct inhibitory networks in layer 4 of the neocortex. , 2003, Journal of neurophysiology.

[130]  David Kleinfeld,et al.  Vibrissa movement elicited by rhythmic electrical microstimulation to motor cortex in the aroused rat mimics exploratory whisking. , 2003, Journal of neurophysiology.

[131]  A. Grinvald,et al.  Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[132]  D. Simons,et al.  Thalamocortical Angular Tuning Domains within Individual Barrels of Rat Somatosensory Cortex , 2003, The Journal of Neuroscience.

[133]  J. Lübke,et al.  Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. , 2003, Cerebral cortex.

[134]  Daniel E Feldman,et al.  Development of Columnar Topography in the Excitatory Layer 4 to Layer 2/3 Projection in Rat Barrel Cortex , 2003, The Journal of Neuroscience.

[135]  Martin Deschênes,et al.  Single‐cell study of motor cortex projections to the barrel field in rats , 2003, The Journal of comparative neurology.

[136]  A. Destexhe,et al.  The high-conductance state of neocortical neurons in vivo , 2003, Nature Reviews Neuroscience.

[137]  D. Simons,et al.  Response transformation and receptive-field synthesis in the lemniscal trigeminothalamic circuit. , 2003, Journal of neurophysiology.

[138]  S Murray Sherman,et al.  Corticothalamic Projections from the Rat Primary Somatosensory Cortex , 2003, The Journal of Neuroscience.

[139]  T. Harkany,et al.  Pyramidal cell communication within local networks in layer 2/3 of rat neocortex , 2003, The Journal of physiology.

[140]  Karel Svoboda,et al.  Circuit Analysis of Experience-Dependent Plasticity in the Developing Rat Barrel Cortex , 2003, Neuron.

[141]  Kevin D. Alloway,et al.  Quantitative comparisons of corticothalamic topography within the ventrobasal complex and the posterior nucleus of the rodent thalamus , 2003, Brain Research.

[142]  R. Kötter,et al.  Cell Type-Specific Circuits of Cortical Layer IV Spiny Neurons , 2003, The Journal of Neuroscience.

[143]  J. Hoover,et al.  Projections from primary somatosensory cortex to the neostriatum: the role of somatotopic continuity in corticostriatal convergence. , 2003, Journal of neurophysiology.

[144]  J. Olavarria,et al.  Beyond Laminar Fate: Toward a Molecular Classification of Cortical Projection/Pyramidal Neurons , 2003, Developmental Neuroscience.

[145]  Vernon B Mountcastle,et al.  Introduction. Computation in cortical columns. , 2003, Cerebral cortex.

[146]  Randy M Bruno,et al.  Feedforward Mechanisms of Excitatory and Inhibitory Cortical Receptive Fields , 2002, The Journal of Neuroscience.

[147]  M. Larkum,et al.  Signaling of Layer 1 and Whisker-Evoked Ca2+ and Na+ Action Potentials in Distal and Terminal Dendrites of Rat Neocortical Pyramidal Neurons In Vitro and In Vivo , 2002, The Journal of Neuroscience.

[148]  B. Sakmann,et al.  ‐Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex , 2002, The Journal of physiology.

[149]  M. Deschenes,et al.  Dendroarchitecture of Relay Cells in Thalamic Barreloids: A Substrate for Cross-Whisker Modulation , 2002, The Journal of Neuroscience.

[150]  R. Silver,et al.  Synaptic connections between layer 4 spiny neurone‐ layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column , 2002, The Journal of physiology.

[151]  Asaf Keller,et al.  Functional independence of layer IV barrels. , 2002, Journal of neurophysiology.

[152]  Bert Sakmann,et al.  Whisker maps of neuronal subclasses of the rat ventral posterior medial thalamus, identified by whole‐cell voltage recording and morphological reconstruction , 2002, The Journal of physiology.

[153]  L. Cauller,et al.  Corticocortical and thalamocortical projections to layer I of the frontal neocortex in rats , 2001, Brain Research.

[154]  B Sakmann,et al.  Functionally Independent Columns of Rat Somatosensory Barrel Cortex Revealed with Voltage-Sensitive Dye Imaging , 2001, The Journal of Neuroscience.

[155]  R. Yuste,et al.  Stereotyped position of local synaptic targets in neocortex. , 2001, Science.

[156]  Kenneth D Miller,et al.  Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex , 2001, Current Opinion in Neurobiology.

[157]  C. Schwarz,et al.  Spatial arrangement of cerebro‐pontine terminals , 2001, The Journal of comparative neurology.

[158]  R. Kötter,et al.  Layer-Specific Intracolumnar and Transcolumnar Functional Connectivity of Layer V Pyramidal Cells in Rat Barrel Cortex , 2001, The Journal of Neuroscience.

[159]  A. Agmon,et al.  Diverse Types of Interneurons Generate Thalamus-Evoked Feedforward Inhibition in the Mouse Barrel Cortex , 2001, The Journal of Neuroscience.

[160]  E Ahissar,et al.  Size gradients of barreloids in the rat thalamus , 2001, The Journal of comparative neurology.

[161]  T. Leergaard,et al.  Three-Dimensional Topography of Corticopontine Projections from Rat Barrel Cortex: Correlations with Corticostriatal Organization , 2000, The Journal of Neuroscience.

[162]  B. Sakmann,et al.  The Excitatory Neuronal Network of Rat Layer 4 Barrel Cortex , 2000, The Journal of Neuroscience.

[163]  J. Hoover,et al.  Overlapping corticostriatal projections from the rodent vibrissal representations in primary and secondary somatosensory cortex , 2000, The Journal of comparative neurology.

[164]  M. Deschenes,et al.  Parallel Streams for the Relay of Vibrissal Information through Thalamic Barreloids , 2000, The Journal of Neuroscience.

[165]  M. Deschenes,et al.  Corticothalamic projections from layer 5 of the vibrissal barrel cortex in the rat , 2000, The Journal of comparative neurology.

[166]  J. Lübke,et al.  Columnar Organization of Dendrites and Axons of Single and Synaptically Coupled Excitatory Spiny Neurons in Layer 4 of the Rat Barrel Cortex , 2000, The Journal of Neuroscience.

[167]  M. Deschenes,et al.  Thalamic projections from the whisker‐sensitive regions of the spinal trigeminal complex in the rat , 2000, The Journal of comparative neurology.

[168]  R. S. Waters,et al.  Thalamocortical arbors extend beyond single cortical barrels: an in vivo intracellular tracing study in rat , 2000, Experimental Brain Research.

[169]  K. Alloway,et al.  Corticostriatal Projections from Rat Barrel Cortex Have an Anisotropic Organization that Correlates with Vibrissal Whisking Behavior , 1999, The Journal of Neuroscience.

[170]  B. Sakmann,et al.  Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex , 1999, Nature Neuroscience.

[171]  J. Lübke,et al.  Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex , 1999, The Journal of physiology.

[172]  D J Simons,et al.  Cortical columnar processing in the rat whisker-to-barrel system. , 1999, Journal of neurophysiology.

[173]  M. Deschenes,et al.  Single- and Multi-Whisker Channels in the Ascending Projections from the Principal Trigeminal Nucleus in the Rat , 1999, The Journal of Neuroscience.

[174]  F. Ebner,et al.  Barrels and septa: Separate circuits in rat barrel field cortex , 1999, The Journal of comparative neurology.

[175]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[176]  B. Sakmann,et al.  Developmental Switch in the Short-Term Modification of Unitary EPSPs Evoked in Layer 2/3 and Layer 5 Pyramidal Neurons of Rat Neocortex , 1999, The Journal of Neuroscience.

[177]  L. Cauller,et al.  Widespread projections from subgriseal neurons (layer VII) to layer I in adult rat cortex , 1999, The Journal of comparative neurology.

[178]  J. Wolff,et al.  Activation of the primary motor cortex by somatosensory stimulation in adult rats is mediated mainly by associational connections from the somatosensory cortex , 1999, Neuroscience.

[179]  G. Arbuthnott,et al.  Double anterograde tracing of outputs from adjacent “barrel columns” of rat somatosensory cortex. Neostriatal projection patterns and terminal ultrastructure , 1999, Neuroscience.

[180]  Martin Deschênes,et al.  The organization of corticothalamic projections: reciprocity versus parity , 1998, Brain Research Reviews.

[181]  Carol M. Petito The Synaptic Organization of the Brain, 4th Ed , 1998 .

[182]  M. Deschenes,et al.  Projections to layer VI of the posteromedial barrel field in the rat: a reappraisal of the role of corticothalamic pathways. , 1998, Cerebral cortex.

[183]  J. Hoover,et al.  Divergent corticostriatal projections from a single cortical column in the somatosensory cortex of rats , 1998, Brain Research.

[184]  M. Deschenes,et al.  Projection and innervation patterns of individual thalamic reticular axons in the thalamus of the adult rat: A three‐dimensional, graphic, and morphometric analysis , 1998, The Journal of comparative neurology.

[185]  B W Connors,et al.  Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I , 1998, The Journal of comparative neurology.

[186]  M. Deschenes,et al.  Intracortical Axonal Projections of Lamina VI Cells of the Primary Somatosensory Cortex in the Rat: A Single-Cell Labeling Study , 1997, The Journal of Neuroscience.

[187]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[188]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[189]  M. Deschenes,et al.  A Single‐cell Study of the Axonal Projections Arising from the Posterior Intralaminar Thalamic Nuclei in the Rat , 1996, The European journal of neuroscience.

[190]  S. Buffer,et al.  Barreloids in adult rat thalamus: Three‐dimensional architecture and relationship to somatosensory cortical barrels , 1995, The Journal of comparative neurology.

[191]  J. Kaas,et al.  Organization of the somatosensory cortex of the star‐nosed mole , 1995, The Journal of comparative neurology.

[192]  M. Deschenes,et al.  Corticothalamic Projections from the Cortical Barrel Field to the Somatosensory Thalamus in Rats: A Single‐fibre Study Using Biocytin as an Anterograde Tracer , 1995, The European journal of neuroscience.

[193]  M F Jacquin,et al.  Differential Foci and Synaptic Organization of the Principal and Spinal Trigeminal Projections to the Thalamus in the Rat , 1994, The European journal of neuroscience.

[194]  L. Cauller,et al.  Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[195]  C. Wilson,et al.  Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. , 1994, Journal of neurophysiology.

[196]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[197]  J. Kaas,et al.  Nose stars and brain stripes , 1993, Nature.

[198]  R. Lin,et al.  Thalamic afferents of the rat barrel cortex: a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. , 1993, Somatosensory & motor research.

[199]  F. Ebner,et al.  Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: Dependence on the barrel field cortex , 1992, The Journal of comparative neurology.

[200]  F. Ebner,et al.  Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus , 1992, The Journal of comparative neurology.

[201]  D. O'Leary,et al.  Functional classes of cortical projection neurons develop dendritic distinctions by class-specific sculpting of an early common pattern , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[202]  R. Lorente de Nó The cerebral cortex of the mouse (a first contribution--the "acoustic" cortex). , 1992, Somatosensory & motor research.

[203]  Lawrence Kruger,et al.  The cerebral cortex of the mouse (a first contribution--the "acoustic" cortex). , 1992 .

[204]  Mara Fabri,et al.  Ipsilateral cortical connections of primary somatic sensory cortex in rats , 1991, The Journal of comparative neurology.

[205]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[206]  P. Ma The barrelettes—architectonic vibrissal representations in the brainstem trigeminal complex of the mouse. Normal structural organization , 1991 .

[207]  T A Woolsey,et al.  Growth of thalamic afferents into mouse barrel cortex. , 1991, Cerebral cortex.

[208]  A. Lopez-Medina,et al.  Targets and Laminar Distribution of Projection Neurons with ‘Inverted’ Morphology in Rabbit Cortex , 1991, The European journal of neuroscience.

[209]  E. White,et al.  Synapses made by axons of callosal projection neurons in mouse somatosensory cortex: Emphasis on intrinsic connections , 1991, The Journal of comparative neurology.

[210]  M Armstrong-James,et al.  Thalamo‐cortical processing of vibrissal information in the rat. II. Spatiotemporal convergence in the thalamic ventroposterior medial nucleus (VPm) and its relevance to generation of receptive fields of S1 cortical “Barrel” neurones , 1991, The Journal of comparative neurology.

[211]  M. A. Friedman,et al.  Thalamo‐cortical processing of vibrissal information in the rat. I. Intracortical origins of surround but not centre‐receptive fields of layer IV neurones in the rat S1 barrel field cortex , 1991, The Journal of comparative neurology.

[212]  J. Bolz,et al.  Morphological types of projection neurons in layer 5 of cat visual cortex , 1990, The Journal of comparative neurology.

[213]  J. Olavarria,et al.  Areal and laminar organization of corticocortical projections in the rat somatosensory cortex , 1990, The Journal of comparative neurology.

[214]  M. Jacquin,et al.  Structure-function relationships in rat brain stem subnucleus interpolaris. VIII. Cortical inputs. , 1990, Journal of neurophysiology.

[215]  F. Valverde,et al.  Development and differentiation of early generated cells of sublayer VIb in the somatosensory cortex of the rat: A correlated Golgi and autoradiographic study , 1989, The Journal of comparative neurology.

[216]  C. Gerfen The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination. , 1989, Science.

[217]  D. Simons,et al.  Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex , 1989, The Journal of comparative neurology.

[218]  D. Simons,et al.  Thalamocortical response transformation in the rat vibrissa/barrel system. , 1989, Journal of neurophysiology.

[219]  M. Glickstein,et al.  Corticopontine projection in the macaque: The distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei , 1985, The Journal of comparative neurology.

[220]  J. Bolz,et al.  Morphology of identified projection neurons in layer 5 of rat visual cortex , 1988, Neuroscience Letters.

[221]  Karl F. Jensen,et al.  Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex , 1988, Brain Research.

[222]  M. Ito,et al.  Response properties and topography of vibrissa-sensitive VPM neurons in the rat. , 1988, Journal of neurophysiology.

[223]  Michael W. Miller Maturation of rat visual cortex: IV. The generation, migration, morphogenesis, and connectivity of atypically oriented pyramidal neurons , 1988, The Journal of comparative neurology.

[224]  J. Winer,et al.  Layer V in rat auditory cortex: Projections to the inferior colliculus and contralateral cortex , 1988, Hearing Research.

[225]  D. Simons,et al.  Thalamic and corticocortical connections of the second somatic sensory area of the mouse , 1987, The Journal of comparative neurology.

[226]  KF Jensen,et al.  Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. I. The normal morphology of specific thalamocortical afferents , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[227]  T A Woolsey,et al.  Axonal trajectories between mouse somatosensory thalamus and cortex , 1987, The Journal of comparative neurology.

[228]  R. Spreafico,et al.  SII-projecting neurons in the rat thalamus: a single- and double-retrograde-tracing study. , 1987, Somatosensory research.

[229]  E. White,et al.  Quantification of thalamocortical synapses with spiny stellate neurons in layer IV of mouse somatosensory cortex , 1986, The Journal of comparative neurology.

[230]  Verne S. Caviness,et al.  Somata of layer V projection neurons in the mouse barrelfield cortex are in preferential register with the sides and septa of the barrels , 1986, Neuroscience Letters.

[231]  M. Glickstein,et al.  Corticopontine projection in the rat: The distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei , 1989, The Journal of comparative neurology.

[232]  E. White,et al.  Thalamocortical and other synapses involving nonspiny multipolar cells of mouse SmI cortex , 1984, The Journal of comparative neurology.

[233]  M. Peschanski,et al.  Trigeminal afferents to the diencephalon in the rat , 1984, Neuroscience.

[234]  H. Killackey,et al.  Evidence for the complementary organization of callosal and thalamic connections within rat somatosensory cortex , 1984, Brain Research.

[235]  H Eichenbaum,et al.  Afferent connections of the perirhinal cortex in the rat , 1983, The Journal of comparative neurology.

[236]  E. White,et al.  Afferent and efferent pathways of the vibrissal region of primary motor cortex in the mouse , 1983, The Journal of comparative neurology.

[237]  J. Donoghue,et al.  A collateral pathway to the neostriatum from corticofugal neurons of the rat sensory‐motor cortex: An intracellular HRP study , 1981, The Journal of comparative neurology.

[238]  E. White,et al.  Thalamocortical synapses involving identified neurons in mouse primary somatosensory cortex: A terminal degeneration and golgi/EM study , 1981, The Journal of comparative neurology.

[239]  H. Killackey,et al.  Diencephalic projections of the subnucleus interpolaris of the brainstem trigeminal complex in the rat , 1980, Neuroscience.

[240]  M. Herkenham Laminar organization of thalamic projections to the rat neocortex. , 1980, Science.

[241]  E. White,et al.  Distribution of thalamic input to different dendrites of a spiny stellate cell in mouse sensorimotor cortex , 1979, Neuroscience Letters.

[242]  E. White,et al.  Afferent and efferent projections of the region in mouse sml cortex which contains the posteromedial barrel subfield , 1977, The Journal of comparative neurology.

[243]  S. Wise,et al.  Somatotopic and columnar organization in the corticotectal projection of the rat somatic sensory cortex , 1977, Brain Research.

[244]  T. Woolsey,et al.  Comparative anatomical studies of the Sml face cortex with special reference to the occurrence of “barrels” in layer IV , 1975, The Journal of comparative neurology.

[245]  D. F. Wann,et al.  Mouse SmI cortex: qualitative and quantitative classification of golgi-impregnated barrel neurons. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[246]  T. Woolsey,et al.  Structure of layer IV in the somatosensory neocortex of the rat: Description and comparison with the mouse , 1974, The Journal of comparative neurology.

[247]  Martin Kay,et al.  Morphological Analysis , 1973, COLING.

[248]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex , 1970 .

[249]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. , 1970, Brain research.

[250]  Elmer S. West From the U. S. A. , 1965 .

[251]  D. Hubel,et al.  Shape and arrangement of columns in cat's striate cortex , 1963, The Journal of physiology.

[252]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[253]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[254]  S. R. Cajal Textura del Sistema Nervioso del Hombre y de los Vertebrados, 1899–1904 , 2019 .