Stochastic Variational Principles for Dissipative Equations with Advected Quantities
暂无分享,去创建一个
[1] J. Marsden,et al. Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .
[2] Jerrold E. Marsden,et al. Diffeomorphism groups, hydrodynamics and relativity , 1972 .
[3] K. Yasue. Stochastic calculus of variations , 1980 .
[4] G. Kallianpur. Stochastic differential equations and diffusion processes , 1981 .
[5] Eric Ronald Priest,et al. Solar magneto-hydrodynamics , 1982 .
[6] Darryl D. Holm,et al. Nonlinear stability conditions and a priori estimates for barotropic hydrodynamics , 1983 .
[7] K. Yasue. A variational principle for the Navier-Stokes equation , 1983 .
[8] Roger Temam,et al. Some mathematical questions related to the MHD equations , 1983 .
[9] R. Abraham,et al. Manifolds, Tensor Analysis, and Applications , 1983 .
[10] M. Émery. Stochastic Calculus in Manifolds , 1989 .
[11] J. Moser,et al. Discrete versions of some classical integrable systems and factorization of matrix polynomials , 1991 .
[12] G. Misiołek. Stability of flows of ideal fluids and the geometry of the group of diffeomorphisms , 1993 .
[13] J. Marsden,et al. The Reduced Euler-Lagrange Equations , 1993 .
[14] J. Marsden,et al. Introduction to mechanics and symmetry , 1994 .
[15] Jerrold E. Marsden,et al. Lagrangian Reduction, the Euler{Poincar e Equations, and Semidirect Products , 1999, chao-dyn/9906004.
[16] Darryl D. Holm,et al. The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.
[17] Jerrold E. Marsden,et al. The Euler-Poincaré Equations in Geophysical Fluid Dynamics , 1999, chao-dyn/9903035.
[18] Tudor S. Ratiu,et al. 2000], Reduction in principal fiber bundles: Covariant Euler-Poincaré equations , 2008 .
[19] J. Marsden,et al. Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems , 2000 .
[20] Jerrold E. Marsden,et al. Geometric mechanics, Lagrangian reduction, and nonholonomic systems , 2001 .
[21] J. Marsden,et al. Discrete mechanics and variational integrators , 2001, Acta Numerica.
[22] Jerrold E. Marsden,et al. Lagrangian Reduction by Stages , 2001 .
[23] T. Ratiu,et al. Euler–Poincaré Reduction on Principal Bundles , 2001 .
[24] J. Marsden,et al. Variational principles for Lie-Poisson and Hamilton-Poincaré equations , 2003 .
[25] T. Ratiu,et al. Reduction in Principal Bundles: Covariant Lagrange-Poincaré Equations , 2003 .
[26] Jerrold E. Marsden,et al. Nonsmooth Lagrangian Mechanics and Variational Collision Integrators , 2003, SIAM J. Appl. Dyn. Syst..
[27] Y. Suris. The Problem of Integrable Discretization: Hamiltonian Approach , 2003 .
[28] Jerrold E. Marsden,et al. An Overview of Variational Integrators , 2004 .
[29] J. Marsden,et al. Variational time integrators , 2004 .
[30] A stochastic Lagrangian representation of the three‐dimensional incompressible Navier‐Stokes equations , 2005, math/0511067.
[31] Howard Brenner,et al. Kinematics of volume transport , 2005 .
[32] H. Brenner. Navier–Stokes revisited , 2005 .
[33] J. Ortega,et al. Stochastic hamiltonian dynamical systems , 2007, math/0702787.
[34] Navier-Stokes Equation and Diffusions on the Group of Homeomorphisms of the Torus , 2007 .
[35] J. Ortega,et al. REDUCTION, RECONSTRUCTION, AND SKEW-PRODUCT DECOMPOSITION OF SYMMETRIC STOCHASTIC DIFFERENTIAL EQUATIONS , 2007, 0705.3156.
[36] Juan-Pablo Ortega,et al. The stochastic Hamilton-Jacobi equation , 2008, 0806.0993.
[37] J. Marsden,et al. Variational integrators for constrained dynamical systems , 2008 .
[38] H. Owhadi,et al. Stochastic Variational Integrators , 2007, 0708.2187.
[39] J. Ortega,et al. Superposition rules and stochastic Lie–Scheffers systems , 2008, 0803.0600.
[40] F. Flandoli,et al. Well-posedness of the transport equation by stochastic perturbation , 2008, 0809.1310.
[41] J. Marsden,et al. DISCRETE MECHANICS AND OPTIMAL CONTROL: AN ANALYSIS ∗ , 2008, 0810.1386.
[42] Tudor S. Ratiu,et al. Reduced Lagrangian and Hamiltonian formulations of Euler-Yang-Mills fluids , 2008, 0903.4287.
[43] Eduard Feireisl,et al. New Perspectives in Fluid Dynamics: Mathematical Analysis of a Model Proposed by Howard Brenner , 2009 .
[44] Darryl D. Holm,et al. Variational Principles For Spin Systems And The Kirchhoff Rod , 2009 .
[45] Stochastic line motion and stochastic flux conservation for nonideal hydromagnetic models , 2009 .
[46] Darryl D. Holm,et al. Geometric dynamics of optimization , 2009, 0912.2989.
[47] Gaurav S. Sukhatme,et al. Geometric discretization of nonholonomic systems with symmetries , 2009 .
[48] François Gay-Balmaz,et al. Infinite dimensional geodesic flows and the universal Teichmüller space , 2009 .
[49] Tudor S. Ratiu,et al. The geometric structure of complex fluids , 2009, Adv. Appl. Math..
[50] Darryl D. Holm,et al. Symmetry Reduced Dynamics of Charged Molecular Strands , 2010 .
[51] Jerrold E. Marsden,et al. Nonintrusive and Structure Preserving Multiscale Integration of Stiff ODEs, SDEs, and Hamiltonian Systems with Hidden Slow Dynamics via Flow Averaging , 2009, Multiscale Model. Simul..
[52] J. Marsden,et al. Discrete mechanics and optimal control for constrained systems , 2010 .
[53] Marc Arnaudon,et al. Lagrangian Navier–Stokes diffusions on manifolds: Variational principle and stability , 2010 .
[54] Tudor S. Ratiu,et al. A new Lagrangian dynamic reduction in field theory , 2014, 1407.0263.
[55] T. Koide,et al. Navier–Stokes, Gross–Pitaevskii and generalized diffusion equations using the stochastic variational method , 2011, 1108.0124.
[56] 張育晟,et al. Navier-Stokes 方程组弱解的存在性 , 2011 .
[57] Tudor S. Ratiu,et al. Geometry of nonabelian charged fluids , 2011 .
[58] T. Ratiu,et al. Clebsch optimal control formulation in mechanics , 2011 .
[59] Darryl D. Holm,et al. Lagrange–Poincaré field equations , 2009, 0910.0874.
[60] Darryl D. Holm,et al. Higher order Lagrange-Poincaré and Hamilton-Poincaré reductions , 2011, 1407.0273.
[61] Darryl D. Holm,et al. The Momentum Map Representation of Images , 2009, J. Nonlinear Sci..
[62] François-Xavier Vialard,et al. Invariant Higher-Order Variational Problems II , 2011, J. Nonlinear Sci..
[63] Marc Arnaudon,et al. Stochastic Euler-Poincaré reduction , 2012 .
[64] Darryl D. Holm,et al. Invariant Higher-Order Variational Problems , 2010, Communications in Mathematical Physics.
[65] T. Ratiu,et al. Euler-Poincaré Approaches to Nematodynamics , 2011, 1110.2617.
[66] Darryl D. Holm,et al. Exact geometric theory of dendronized polymer dynamics , 2010, Adv. Appl. Math..
[67] Jerrold E. Marsden,et al. Reduced Variational Formulations in Free Boundary Continuum Mechanics , 2012, J. Nonlinear Sci..
[68] Simon Hochgerner,et al. Geometry of non-holonomic diffusion , 2012, 1204.6438.
[69] Sina Ober-Blöbaum,et al. A Variational Approach to Multirate Integration for Constrained Systems , 2013 .
[70] C. Marle,et al. "Sur une forme nouvelle des ´ equations de la M´ ecanique" , 2013 .
[71] Tudor S. Ratiu,et al. Equivalent Theories of Liquid Crystal Dynamics , 2011, 1102.2918.
[72] Lagrangian Reductions and Integrable Systems in Condensed Matter , 2014, 1404.7654.
[73] Darryl D. Holm. Variational principles for stochastic fluid dynamics , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[74] Dehua Wang,et al. Global existence of martingale solutions to the three-dimensional stochastic compressible Navier-Stokes equations , 2015, Differential and Integral Equations.
[75] Jean-Claude Zambrini,et al. The research program of Stochastic Deformation (with a view toward Geometric Mechanics) , 2012, 1212.4186.
[76] S. Mehler. Stochastic Flows And Stochastic Differential Equations , 2016 .
[77] T. Ratiu,et al. Bi-Jacobi fields and Riemannian cubics for left-invariant $SO(3)$ , 2016 .
[78] T. Ratiu,et al. MULTISYMPLECTIC VARIATIONAL INTEGRATORS FOR NONSMOOTH LAGRANGIAN CONTINUUM MECHANICS , 2016, Forum of Mathematics, Sigma.