Stochastic Variational Principles for Dissipative Equations with Advected Quantities

We develop symmetry reduction for material stochastic Lagrangian systems with advected quantities whose configuration space is a Lie group, obtaining deterministic constrained variational principles and dissipative equations of motion in spatial representation. We discuss in detail the situation when the group in the general theory is a group of diffeomorphisms and derive, as an application, an MHD system for viscous compressible fluids.

[1]  J. Marsden,et al.  Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .

[2]  Jerrold E. Marsden,et al.  Diffeomorphism groups, hydrodynamics and relativity , 1972 .

[3]  K. Yasue Stochastic calculus of variations , 1980 .

[4]  G. Kallianpur Stochastic differential equations and diffusion processes , 1981 .

[5]  Eric Ronald Priest,et al.  Solar magneto-hydrodynamics , 1982 .

[6]  Darryl D. Holm,et al.  Nonlinear stability conditions and a priori estimates for barotropic hydrodynamics , 1983 .

[7]  K. Yasue A variational principle for the Navier-Stokes equation , 1983 .

[8]  Roger Temam,et al.  Some mathematical questions related to the MHD equations , 1983 .

[9]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[10]  M. Émery Stochastic Calculus in Manifolds , 1989 .

[11]  J. Moser,et al.  Discrete versions of some classical integrable systems and factorization of matrix polynomials , 1991 .

[12]  G. Misiołek Stability of flows of ideal fluids and the geometry of the group of diffeomorphisms , 1993 .

[13]  J. Marsden,et al.  The Reduced Euler-Lagrange Equations , 1993 .

[14]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[15]  Jerrold E. Marsden,et al.  Lagrangian Reduction, the Euler{Poincar e Equations, and Semidirect Products , 1999, chao-dyn/9906004.

[16]  Darryl D. Holm,et al.  The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.

[17]  Jerrold E. Marsden,et al.  The Euler-Poincaré Equations in Geophysical Fluid Dynamics , 1999, chao-dyn/9903035.

[18]  Tudor S. Ratiu,et al.  2000], Reduction in principal fiber bundles: Covariant Euler-Poincaré equations , 2008 .

[19]  J. Marsden,et al.  Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems , 2000 .

[20]  Jerrold E. Marsden,et al.  Geometric mechanics, Lagrangian reduction, and nonholonomic systems , 2001 .

[21]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[22]  Jerrold E. Marsden,et al.  Lagrangian Reduction by Stages , 2001 .

[23]  T. Ratiu,et al.  Euler–Poincaré Reduction on Principal Bundles , 2001 .

[24]  J. Marsden,et al.  Variational principles for Lie-Poisson and Hamilton-Poincaré equations , 2003 .

[25]  T. Ratiu,et al.  Reduction in Principal Bundles: Covariant Lagrange-Poincaré Equations , 2003 .

[26]  Jerrold E. Marsden,et al.  Nonsmooth Lagrangian Mechanics and Variational Collision Integrators , 2003, SIAM J. Appl. Dyn. Syst..

[27]  Y. Suris The Problem of Integrable Discretization: Hamiltonian Approach , 2003 .

[28]  Jerrold E. Marsden,et al.  An Overview of Variational Integrators , 2004 .

[29]  J. Marsden,et al.  Variational time integrators , 2004 .

[30]  A stochastic Lagrangian representation of the three‐dimensional incompressible Navier‐Stokes equations , 2005, math/0511067.

[31]  Howard Brenner,et al.  Kinematics of volume transport , 2005 .

[32]  H. Brenner Navier–Stokes revisited , 2005 .

[33]  J. Ortega,et al.  Stochastic hamiltonian dynamical systems , 2007, math/0702787.

[34]  Navier-Stokes Equation and Diffusions on the Group of Homeomorphisms of the Torus , 2007 .

[35]  J. Ortega,et al.  REDUCTION, RECONSTRUCTION, AND SKEW-PRODUCT DECOMPOSITION OF SYMMETRIC STOCHASTIC DIFFERENTIAL EQUATIONS , 2007, 0705.3156.

[36]  Juan-Pablo Ortega,et al.  The stochastic Hamilton-Jacobi equation , 2008, 0806.0993.

[37]  J. Marsden,et al.  Variational integrators for constrained dynamical systems , 2008 .

[38]  H. Owhadi,et al.  Stochastic Variational Integrators , 2007, 0708.2187.

[39]  J. Ortega,et al.  Superposition rules and stochastic Lie–Scheffers systems , 2008, 0803.0600.

[40]  F. Flandoli,et al.  Well-posedness of the transport equation by stochastic perturbation , 2008, 0809.1310.

[41]  J. Marsden,et al.  DISCRETE MECHANICS AND OPTIMAL CONTROL: AN ANALYSIS ∗ , 2008, 0810.1386.

[42]  Tudor S. Ratiu,et al.  Reduced Lagrangian and Hamiltonian formulations of Euler-Yang-Mills fluids , 2008, 0903.4287.

[43]  Eduard Feireisl,et al.  New Perspectives in Fluid Dynamics: Mathematical Analysis of a Model Proposed by Howard Brenner , 2009 .

[44]  Darryl D. Holm,et al.  Variational Principles For Spin Systems And The Kirchhoff Rod , 2009 .

[45]  Stochastic line motion and stochastic flux conservation for nonideal hydromagnetic models , 2009 .

[46]  Darryl D. Holm,et al.  Geometric dynamics of optimization , 2009, 0912.2989.

[47]  Gaurav S. Sukhatme,et al.  Geometric discretization of nonholonomic systems with symmetries , 2009 .

[48]  François Gay-Balmaz,et al.  Infinite dimensional geodesic flows and the universal Teichmüller space , 2009 .

[49]  Tudor S. Ratiu,et al.  The geometric structure of complex fluids , 2009, Adv. Appl. Math..

[50]  Darryl D. Holm,et al.  Symmetry Reduced Dynamics of Charged Molecular Strands , 2010 .

[51]  Jerrold E. Marsden,et al.  Nonintrusive and Structure Preserving Multiscale Integration of Stiff ODEs, SDEs, and Hamiltonian Systems with Hidden Slow Dynamics via Flow Averaging , 2009, Multiscale Model. Simul..

[52]  J. Marsden,et al.  Discrete mechanics and optimal control for constrained systems , 2010 .

[53]  Marc Arnaudon,et al.  Lagrangian Navier–Stokes diffusions on manifolds: Variational principle and stability , 2010 .

[54]  Tudor S. Ratiu,et al.  A new Lagrangian dynamic reduction in field theory , 2014, 1407.0263.

[55]  T. Koide,et al.  Navier–Stokes, Gross–Pitaevskii and generalized diffusion equations using the stochastic variational method , 2011, 1108.0124.

[56]  張育晟,et al.  Navier-Stokes 方程组弱解的存在性 , 2011 .

[57]  Tudor S. Ratiu,et al.  Geometry of nonabelian charged fluids , 2011 .

[58]  T. Ratiu,et al.  Clebsch optimal control formulation in mechanics , 2011 .

[59]  Darryl D. Holm,et al.  Lagrange–Poincaré field equations , 2009, 0910.0874.

[60]  Darryl D. Holm,et al.  Higher order Lagrange-Poincaré and Hamilton-Poincaré reductions , 2011, 1407.0273.

[61]  Darryl D. Holm,et al.  The Momentum Map Representation of Images , 2009, J. Nonlinear Sci..

[62]  François-Xavier Vialard,et al.  Invariant Higher-Order Variational Problems II , 2011, J. Nonlinear Sci..

[63]  Marc Arnaudon,et al.  Stochastic Euler-Poincaré reduction , 2012 .

[64]  Darryl D. Holm,et al.  Invariant Higher-Order Variational Problems , 2010, Communications in Mathematical Physics.

[65]  T. Ratiu,et al.  Euler-Poincaré Approaches to Nematodynamics , 2011, 1110.2617.

[66]  Darryl D. Holm,et al.  Exact geometric theory of dendronized polymer dynamics , 2010, Adv. Appl. Math..

[67]  Jerrold E. Marsden,et al.  Reduced Variational Formulations in Free Boundary Continuum Mechanics , 2012, J. Nonlinear Sci..

[68]  Simon Hochgerner,et al.  Geometry of non-holonomic diffusion , 2012, 1204.6438.

[69]  Sina Ober-Blöbaum,et al.  A Variational Approach to Multirate Integration for Constrained Systems , 2013 .

[70]  C. Marle,et al.  "Sur une forme nouvelle des ´ equations de la M´ ecanique" , 2013 .

[71]  Tudor S. Ratiu,et al.  Equivalent Theories of Liquid Crystal Dynamics , 2011, 1102.2918.

[72]  Lagrangian Reductions and Integrable Systems in Condensed Matter , 2014, 1404.7654.

[73]  Darryl D. Holm Variational principles for stochastic fluid dynamics , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[74]  Dehua Wang,et al.  Global existence of martingale solutions to the three-dimensional stochastic compressible Navier-Stokes equations , 2015, Differential and Integral Equations.

[75]  Jean-Claude Zambrini,et al.  The research program of Stochastic Deformation (with a view toward Geometric Mechanics) , 2012, 1212.4186.

[76]  S. Mehler Stochastic Flows And Stochastic Differential Equations , 2016 .

[77]  T. Ratiu,et al.  Bi-Jacobi fields and Riemannian cubics for left-invariant $SO(3)$ , 2016 .

[78]  T. Ratiu,et al.  MULTISYMPLECTIC VARIATIONAL INTEGRATORS FOR NONSMOOTH LAGRANGIAN CONTINUUM MECHANICS , 2016, Forum of Mathematics, Sigma.