A Parametric Nonconvex Decomposition Algorithm for Real-Time and Distributed NMPC

A novel decomposition scheme to solve parametric nonconvex programs as they arise in Nonlinear Model Predictive Control (NMPC) is presented. It consists of a fixed number of alternating proximal gradient steps and a dual update per time step. Hence, the proposed approach is attractive in a real-time distributed context. Assuming that the Nonlinear Program (NLP) is semi-algebraic and that its critical points are strongly regular, contraction of the sequence of primal-dual iterates is proven, implying stability of the sub-optimality error, under some mild assumptions. Moreover, it is shown that the performance of the optimality-tracking scheme can be enhanced via a continuation technique. The efficacy of the proposed decomposition method is demonstrated by solving a centralized NMPC problem to control a dc motor and a distributed NMPC program for collaborative tracking of unicycles, both within a real-time framework. Furthermore, an analysis of the sub-optimality error as a function of the sampling period is proposed given a fixed computational power.

[1]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .

[2]  Mazen Alamir,et al.  Monitoring control updating period in fast gradient based NMPC , 2012, 2013 European Control Conference (ECC).

[3]  Adrian S. Lewis,et al.  The [barred L]ojasiewicz Inequality for Nonsmooth Subanalytic Functions with Applications to Subgradient Dynamical Systems , 2006, SIAM J. Optim..

[4]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[5]  P. Toint,et al.  Testing a class of methods for solving minimization problems with simple bounds on the variables , 1988 .

[6]  Victor M. Zavala,et al.  The advanced-step NMPC controller: Optimality, stability and robustness , 2009, Autom..

[7]  Benar Fux Svaiter,et al.  Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods , 2013, Math. Program..

[8]  Dinh Quoc Tran,et al.  Adjoint-Based Predictor-Corrector Sequential Convex Programming for Parametric Nonlinear Optimization , 2012, SIAM J. Optim..

[9]  Heinz Unbehauen,et al.  Experimental physical parameter estimation of a thyristor driven DC-motor using the HMF-method , 1998 .

[10]  Colin Neil Jones,et al.  An augmented Lagrangian coordination-decomposition algorithm for solving distributed non-convex programs , 2014, 2014 American Control Conference.

[11]  Mazen Alamir,et al.  Fast NMPC: A reality-steered paradigm: Key properties of fast NMPC algorithms , 2014, 2014 European Control Conference (ECC).

[12]  Hédy Attouch,et al.  On the convergence of the proximal algorithm for nonsmooth functions involving analytic features , 2008, Math. Program..

[13]  MORITZ DIEHL,et al.  A Real-Time Iteration Scheme for Nonlinear Optimization in Optimal Feedback Control , 2005, SIAM J. Control. Optim..

[14]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[15]  P. Toint,et al.  A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds , 1991 .

[16]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[17]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[18]  P. Tseng Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .

[19]  Yurii Nesterov,et al.  Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..

[20]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[21]  Victor M. Zavala,et al.  Scalable Nonlinear Programming via Exact Differentiable Penalty Functions and Trust-Region Newton Methods , 2014, SIAM J. Optim..

[22]  Rolf Findeisen,et al.  Stability of NMPC with Cyclic Horizons , 2013, NOLCOS.

[23]  Victor M. Zavala,et al.  Real-Time Nonlinear Optimization as a Generalized Equation , 2010, SIAM J. Control. Optim..

[24]  Dinh Quoc Tran,et al.  A dual decomposition algorithm for separable nonconvex optimization using the penalty function framework , 2013, 52nd IEEE Conference on Decision and Control.

[25]  Abdelouahed Hamdi,et al.  Decomposition Methods Based on Augmented Lagrangians: A Survey , 2011 .

[26]  R. Rockafellar Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming , 1974 .

[27]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[28]  Marc Teboulle,et al.  Proximal alternating linearized minimization for nonconvex and nonsmooth problems , 2013, Mathematical Programming.

[29]  Stephen J. Wright,et al.  Cooperative distributed model predictive control for nonlinear systems , 2011 .

[30]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[31]  Fu Lin,et al.  Design of Optimal Sparse Feedback Gains via the Alternating Direction Method of Multipliers , 2011, IEEE Transactions on Automatic Control.

[32]  G. Martin,et al.  Nonlinear model predictive control , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[33]  Hédy Attouch,et al.  Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality , 2008, Math. Oper. Res..

[34]  Manfred Morari,et al.  Distributed synthesis and control of constrained linear systems , 2012, 2012 American Control Conference (ACC).

[35]  Paul H. Calamai,et al.  Projected gradient methods for linearly constrained problems , 1987, Math. Program..

[36]  R. Tyrrell Rockafellar,et al.  Characterizations of Strong Regularity for Variational Inequalities over Polyhedral Convex Sets , 1996, SIAM J. Optim..

[37]  Nicholas I. M. Gould,et al.  Convergence Properties of an Augmented Lagrangian Algorithm for Optimization with a Combination of General Equality and Linear Constraints , 1996, SIAM J. Optim..

[38]  K. Kurdyka,et al.  Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials , 2005 .

[39]  M. J. D. Powell,et al.  On search directions for minimization algorithms , 1973, Math. Program..

[40]  K. Kurdyka EFFECTIVE LOJASIEWICZ GRADIENT INEQUALITY FOR POLYNOMIALS , 2005 .

[41]  H. J. Ferreau,et al.  An online active set strategy to overcome the limitations of explicit MPC , 2008 .

[42]  William B. Dunbar,et al.  Distributed Receding Horizon Control of Dynamically Coupled Nonlinear Systems , 2007, IEEE Transactions on Automatic Control.

[43]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[44]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[45]  Johan A. K. Suykens,et al.  Distributed nonlinear optimal control using sequential convex programming and smoothing techniques , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.