Machine learning reveals orbital interaction in materials

We propose a novel representation of materials named an ‘orbital-field matrix (OFM)’, which is based on the distribution of valence shell electrons. We demonstrate that this new representation can be highly useful in mining material data. Experimental investigation shows that the formation energies of crystalline materials, atomization energies of molecular materials, and local magnetic moments of the constituent atoms in bimetal alloys of lanthanide metal and transition-metal can be predicted with high accuracy using the OFM. Knowledge regarding the role of the coordination numbers of the transition-metal and lanthanide elements in determining the local magnetic moments of the transition-metal sites can be acquired directly from decision tree regression analyses using the OFM. Graphical Abstract

[1]  Anubhav Jain,et al.  The Materials Application Programming Interface (API): A simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles , 2015 .

[2]  Lorenz C. Blum,et al.  970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. , 2009, Journal of the American Chemical Society.

[3]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[4]  M. O'keeffe,et al.  A proposed rigorous definition of coordination number , 1979 .

[5]  Nongnuch Artrith,et al.  High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide , 2011 .

[6]  Yousef Saad,et al.  Data mining for materials: Computational experiments with AB compounds , 2012 .

[7]  Matthias Rupp,et al.  Machine learning for quantum mechanics in a nutshell , 2015 .

[8]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[9]  Hieu Chi Dam,et al.  Data mining for materials design: a computational study of single molecule magnet. , 2014, The Journal of chemical physics.

[10]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[11]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[12]  Felix A Faber,et al.  Crystal structure representations for machine learning models of formation energies , 2015, 1503.07406.

[13]  K. Müller,et al.  Fast and accurate modeling of molecular atomization energies with machine learning. , 2011, Physical review letters.

[14]  Gábor Csányi,et al.  Gaussian approximation potentials: A brief tutorial introduction , 2015, 1502.01366.

[15]  Gabriela C. Weaver,et al.  Chemistry and Chemical Reactivity , 1999 .

[16]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[17]  Atsuto Seko,et al.  Representation of compounds for machine-learning prediction of physical properties , 2016, 1611.08645.

[18]  Nongnuch Artrith,et al.  High-dimensional neural network potentials for metal surfaces: A prototype study for copper , 2012 .

[19]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[20]  Klaus-Robert Müller,et al.  Finding Density Functionals with Machine Learning , 2011, Physical review letters.

[21]  R. Kondor,et al.  Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. , 2009, Physical review letters.

[22]  Anubhav Jain,et al.  Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory , 2010 .

[23]  Iosif I. Vaisman,et al.  Identifying Zeolite Frameworks with a Machine Learning Approach , 2009 .

[24]  Sanguthevar Rajasekaran,et al.  Accelerating materials property predictions using machine learning , 2013, Scientific Reports.

[25]  J. Vybíral,et al.  Big data of materials science: critical role of the descriptor. , 2014, Physical review letters.

[26]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[27]  Rustam Z. Khaliullin,et al.  Microscopic origins of the anomalous melting behavior of sodium under high pressure. , 2011, Physical review letters.

[28]  J. Behler Atom-centered symmetry functions for constructing high-dimensional neural network potentials. , 2011, The Journal of chemical physics.

[29]  Corey Oses,et al.  Materials Cartography: Representing and Mining Material Space Using Structural and Electronic Fingerprints , 2014, 1412.4096.

[30]  Y. Jean Molecular Orbitals of Transition Metal Complexes , 2005 .

[31]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[32]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[33]  Nobuyasu Ito,et al.  A tool for parameter-space explorations , 2014, ArXiv.

[34]  Nongnuch Artrith,et al.  Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: a combination of DFT and accurate neural network potentials. , 2014, Nano letters.

[35]  Thomas D. Kuhne,et al.  Ab initio quality neural-network potential for sodium , 2010, 1002.2879.

[36]  Gábor Csányi,et al.  Comparing molecules and solids across structural and alchemical space. , 2015, Physical chemistry chemical physics : PCCP.

[37]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[38]  Hieu Chi Dam,et al.  Novel mixture model for the representation of potential energy surfaces. , 2016, The Journal of chemical physics.

[39]  Kiyoyuki Terakura,et al.  Local and non-local spin susceptibilities of transition metals , 1982 .

[40]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.