Cortical Plasticity: A View from Nonhuman Primates

The primate’s large brain-to-body weight ratio and high complexity are unusual in the animal kingdom. There is compelling evidence that it is an evolutionary adaptation that allows its owner to live a long life because of its competence in solving a wide range of problems. How primates use their brain to achieve such competence is of course of central interest to us. Here we review some key aspects of the neocortex that can be explored in nonhuman primates. Studies of the cortical circuits in the visual cortex reveal that the two major types of pathways, called feedforward and feedback, involve a very small fraction of the total synapses that any area contains. Nevertheless these pathways may be critical for some important forms of cortical plasticity, like perceptual learning and tasks involving perception and action.

[1]  Paul H. Harvey,et al.  Primates, brains and ecology , 2009 .

[2]  Kevan A C Martin,et al.  Synaptic connection from cortical area V4 to V2 in macaque monkey , 2006, The Journal of comparative neurology.

[3]  G. Roth,et al.  Evolution of the brain and intelligence , 2005, Trends in Cognitive Sciences.

[4]  Zhe Qu,et al.  Neural substrates of visual perceptual learning of simple and complex stimuli , 2005, Clinical Neurophysiology.

[5]  M. Fahle Perceptual learning: a case for early selection. , 2004, Journal of vision.

[6]  R. Andersen,et al.  Cognitive Control Signals for Neural Prosthetics , 2004, Science.

[7]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[8]  Denis Le Bihan,et al.  Looking into the functional architecture of the brain with diffusion MRI , 2003, Nature Reviews Neuroscience.

[9]  D. Hoffman,et al.  Sensorimotor transformations in cortical motor areas , 2003, Neuroscience Research.

[10]  Dawn M. Taylor,et al.  Direct Cortical Control of 3D Neuroprosthetic Devices , 2002, Science.

[11]  D. Boussaoud,et al.  Parietal inputs to dorsal versus ventral premotor areas in the macaque monkey: evidence for largely segregated visuomotor pathways , 2002, Experimental Brain Research.

[12]  John H. R. Maunsell,et al.  Physiological correlates of perceptual learning in monkey V1 and V2. , 2002, Journal of neurophysiology.

[13]  Misha Tsodyks,et al.  Context-enabled learning in the human visual system , 2002, Nature.

[14]  K. Martin,et al.  Connection from cortical area V2 to MT in macaque monkey , 2002 .

[15]  Takeo Watanabe,et al.  Perceptual learning without perception , 2001, Nature.

[16]  D. Hoffman,et al.  Direction of action is represented in the ventral premotor cortex , 2001, Nature Neuroscience.

[17]  G. Rizzolatti,et al.  The Cortical Motor System , 2001, Neuron.

[18]  C. Gilbert,et al.  The Neural Basis of Perceptual Learning , 2001, Neuron.

[19]  R. Johansson,et al.  Eye–Hand Coordination in Object Manipulation , 2001, The Journal of Neuroscience.

[20]  G. Orban,et al.  Practising orientation identification improves orientation coding in V1 neurons , 2001, Nature.

[21]  C. Gilbert,et al.  Learning to see: experience and attention in primary visual cortex , 2001, Nature Neuroscience.

[22]  G. Rizzolatti,et al.  Cortical mechanism for the visual guidance of hand grasping movements in the monkey: A reversible inactivation study. , 2001, Brain : a journal of neurology.

[23]  Jerald D. Kralik,et al.  Real-time prediction of hand trajectory by ensembles of cortical neurons in primates , 2000, Nature.

[24]  H. Sakata,et al.  Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. , 2000, Journal of neurophysiology.

[25]  K. Martin,et al.  Termination of the geniculocortical projection in the striate cortex of macaque monkey: A quantitative immunoelectron microscopic study , 2000, The Journal of comparative neurology.

[26]  H. Bekkering,et al.  Ocular gaze is anchored to the target of an ongoing pointing movement. , 2000, Journal of neurophysiology.

[27]  H. Sakata,et al.  Neural representation of three-dimensional features of manipulation objects with stereopsis , 1999, Experimental Brain Research.

[28]  A. Murata,et al.  Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4) , 1999, Experimental Brain Research.

[29]  J. C. Anderson,et al.  The Connection from Cortical Area V1 to V5: A Light and Electron Microscopic Study , 1998, The Journal of Neuroscience.

[30]  G. Rizzolatti,et al.  Object representation in the ventral premotor cortex (area F5) of the monkey. , 1997, Journal of neurophysiology.

[31]  M. Fahle,et al.  The role of feedback in learning a vernier discrimination task , 1997, Vision Research.

[32]  M. Fahle,et al.  The role of visual field position in pattern–discrimination learning , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[33]  Tracy L. Faber,et al.  Role of posterior parietal cortex in the recalibration of visually guided reaching , 1996, Nature.

[34]  Tomaso Poggio,et al.  Learning to see , 1996 .

[35]  D. Boussaoud,et al.  Direct visual pathways for reaching movements in the macaque monkey , 1995, Neuroreport.

[36]  H. Sakata,et al.  Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. , 1995, Cerebral cortex.

[37]  M. Arbib,et al.  Grasping objects: the cortical mechanisms of visuomotor transformation , 1995, Trends in Neurosciences.

[38]  H. Sakata,et al.  Deficit of hand preshaping after muscimol injection in monkey parietal cortex , 1994, Neuroreport.

[39]  F. Crick,et al.  Backwardness of human neuroanatomy , 1993, Nature.

[40]  T Poggio,et al.  Fast perceptual learning in visual hyperacuity. , 1991, Science.

[41]  D Sagi,et al.  Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[42]  A. Georgopoulos,et al.  Parietal cortex neurons of the monkey related to the visual guidance of hand movement , 1990, Experimental Brain Research.

[43]  G. Rizzolatti,et al.  Functional organization of inferior area 6 in the macaque monkey , 1988, Experimental Brain Research.

[44]  Hugh R. Wilson,et al.  Responses of spatial mechanisms can explain hyperacuity , 1986, Vision Research.

[45]  J. Tanji,et al.  Premotor cortex neurons in macaques: activity before distal and proximal forelimb movements , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  G. Rizzolatti,et al.  Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey , 1985, Behavioural Brain Research.

[47]  S. McKee,et al.  Improvement in vernier acuity with practice , 1978, Perception & psychophysics.

[48]  R. Held,et al.  MOVEMENT-PRODUCED STIMULATION IN THE DEVELOPMENT OF VISUALLY GUIDED BEHAVIOR. , 1963, Journal of comparative and physiological psychology.

[49]  A. Posner Learning to see. , 1955, Eye, ear, nose & throat monthly.

[50]  Kevan A C Martin,et al.  Connection from cortical area V2 to V3 A in macaque monkey. , 2005, The Journal of comparative neurology.

[51]  C. C. A. M. Gielen,et al.  Coordination of fast eye and arm movements in a tracking task , 2004, Experimental Brain Research.

[52]  R. Andersen,et al.  Intentional maps in posterior parietal cortex. , 2002, Annual review of neuroscience.

[53]  J. Bullier,et al.  The role of feedback connections in shaping the responses of visual cortical neurons. , 2001, Progress in brain research.

[54]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[55]  J. Mollon,et al.  Three remarks on perceptual learning. , 1996, Spatial vision.

[56]  Jean Bullier,et al.  The Role of Area 17 in the Transfer of Information to Extrastriate Visual Cortex , 1994 .

[57]  H. J. Jerison Chapter 9 – Evolution of the Brain in Birds , 1973 .

[58]  G. Orban,et al.  Practising orientation identi ® cation improves orientation coding in V 1 neurons , 2022 .