The UCSC genome browser and associated tools

The UCSC Genome Browser (http://genome.ucsc.edu) is a graphical viewer for genomic data now in its 13th year. Since the early days of the Human Genome Project, it has presented an integrated view of genomic data of many kinds. Now home to assemblies for 58 organisms, the Browser presents visualization of annotations mapped to genomic coordinates. The ability to juxtapose annotations of many types facilitates inquiry-driven data mining. Gene predictions, mRNA alignments, epigenomic data from the ENCODE project, conservation scores from vertebrate whole-genome alignments and variation data may be viewed at any scale from a single base to an entire chromosome. The Browser also includes many other widely used tools, including BLAT, which is useful for alignments from high-throughput sequencing experiments. Private data uploaded as Custom Tracks and Data Hubs in many formats may be displayed alongside the rich compendium of precomputed data in the UCSC database. The Table Browser is a full-featured graphical interface, which allows querying, filtering and intersection of data tables. The Saved Session feature allows users to store and share customized views, enhancing the utility of the system for organizing multiple trains of thought. Binary Alignment/Map (BAM), Variant Call Format and the Personal Genome Single Nucleotide Polymorphisms (SNPs) data formats are useful for visualizing a large sequencing experiment (whole-genome or whole-exome), where the differences between the data set and the reference assembly may be displayed graphically. Support for high-throughput sequencing extends to compact, indexed data formats, such as BAM, bigBed and bigWig, allowing rapid visualization of large datasets from RNA-seq and ChIP-seq experiments via local hosting.

[1]  D. Haussler,et al.  Aligning multiple genomic sequences with the threaded blockset aligner. , 2004, Genome research.

[2]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[3]  Daniel Rios,et al.  Bioinformatics Applications Note Databases and Ontologies Deriving the Consequences of Genomic Variants with the Ensembl Api and Snp Effect Predictor , 2022 .

[4]  David Haussler,et al.  New Methods for Detecting Lineage-Specific Selection , 2006, RECOMB.

[5]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[6]  Alan F. Scott,et al.  McKusick's Online Mendelian Inheritance in Man (OMIM®) , 2008, Nucleic Acids Res..

[7]  Sue Povey,et al.  The HGNC Database in 2008: a resource for the human genome , 2007, Nucleic Acids Res..

[8]  Patricia K. Baskin,et al.  GeneTests‐GeneClinics: Genetic testing information for a growing audience , 2002, Human mutation.

[9]  Manuel Corpas,et al.  DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. , 2009, American journal of human genetics.

[10]  Galt P. Barber,et al.  BigWig and BigBed: enabling browsing of large distributed datasets , 2010, Bioinform..

[11]  Baris E. Suzek,et al.  The Universal Protein Resource (UniProt) in 2010 , 2009, Nucleic Acids Res..

[12]  D. Haussler,et al.  Evolution's cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Tsviya Olender,et al.  Human Gene-Centric Databases at the Weizmann Institute of Science: GeneCards, UDB, CroW 21 and HORDE , 2003, Nucleic Acids Res..

[14]  Ting Wang,et al.  The UCSC Genome Browser Database: update 2009 , 2008, Nucleic Acids Res..

[15]  Gautier Koscielny,et al.  Ensembl 2012 , 2011, Nucleic Acids Res..

[16]  The International HapMap Consortium,et al.  A physical map of the human genome , 2001 .

[17]  Joshua M. Stuart,et al.  Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. , 2009, The Journal of heredity.

[18]  David Haussler,et al.  The UCSC Known Genes , 2006, Bioinform..

[19]  Mary Goldman,et al.  The UCSC Genome Browser database: update 2011 , 2010, Nucleic Acids Res..

[20]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[21]  Paul T. Groth,et al.  The ENCODE (ENCyclopedia Of DNA Elements) Project , 2004, Science.

[22]  Mary Goldman,et al.  The UCSC Genome Browser database: extensions and updates 2013 , 2012, Nucleic Acids Res..

[23]  Judith A. Blake,et al.  The Mouse Genome Database (MGD): mouse biology and model systems , 2007, Nucleic Acids Res..

[24]  William Stafford Noble,et al.  Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project , 2007, Nature.

[25]  Jocelyn Kaiser,et al.  A Plan to Capture Human Diversity in 1000 Genomes , 2008, Science.

[26]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[27]  María Martín,et al.  The Universal Protein Resource (UniProt) in 2010 , 2010 .

[28]  David Haussler,et al.  ENCODE whole-genome data in the UCSC genome browser (2011 update) , 2010, Nucleic Acids Res..

[29]  Gregory M. Cooper,et al.  A Copy Number Variation Morbidity Map of Developmental Delay , 2011, Nature Genetics.

[30]  David Haussler,et al.  The UCSC Genome Browser database: update 2010 , 2009, Nucleic Acids Res..

[31]  S. Lewis,et al.  The generic genome browser: a building block for a model organism system database. , 2002, Genome research.

[32]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[33]  K. Katz,et al.  Introducing RefSeq and LocusLink: curated human genome resources at the NCBI. , 2000, Trends in genetics : TIG.

[34]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[35]  Michael DiCuccio,et al.  Public data archives for genomic structural variation , 2010, Nature Genetics.

[36]  Daniel Rios,et al.  Ensembl 2011 , 2010, Nucleic Acids Res..

[37]  David Haussler,et al.  The UCSC genome browser database: update 2007 , 2006, Nucleic Acids Res..

[38]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[39]  D. Haussler,et al.  A physical map of the human genome , 2001, Nature.

[40]  Michael R. Brent,et al.  Using Multiple Alignments to Improve Gene Prediction , 2005, RECOMB.

[41]  Ting Wang,et al.  ENCODE whole-genome data in the UCSC Genome Browser , 2009, Nucleic Acids Res..

[42]  S. Batalov,et al.  A gene atlas of the mouse and human protein-encoding transcriptomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[43]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[44]  T. Mikkelsen,et al.  The NIH Roadmap Epigenomics Mapping Consortium , 2010, Nature Biotechnology.

[45]  Gautier Koscielny,et al.  Ensembl’s 10th year , 2009, Nucleic Acids Res..

[46]  Tao Liu,et al.  TreeFam: 2008 Update , 2007, Nucleic Acids Res..

[47]  L. Feuk,et al.  Detection of large-scale variation in the human genome , 2004, Nature Genetics.

[48]  M. Adams,et al.  Recent Segmental Duplications in the Human Genome , 2002, Science.

[49]  Mary Goldman,et al.  The UCSC Genome Browser database: extensions and updates 2011 , 2011, Nucleic Acids Res..

[50]  D. Haussler,et al.  Assembly of the working draft of the human genome with GigAssembler. , 2001, Genome research.

[51]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[52]  W. James Kent,et al.  The Intronerator: exploring introns and alternative splicing in Caenorhabditis elegans , 2000, Nucleic Acids Res..

[53]  Yong-shu He,et al.  [Structural variation in the human genome]. , 2009, Yi chuan = Hereditas.