Adaptive and Resilient Soft Tensegrity Robots

Abstract Living organisms intertwine soft (e.g., muscle) and hard (e.g., bones) materials, giving them an intrinsic flexibility and resiliency often lacking in conventional rigid robots. The emerging field of soft robotics seeks to harness these same properties to create resilient machines. The nature of soft materials, however, presents considerable challenges to aspects of design, construction, and control—and up until now, the vast majority of gaits for soft robots have been hand-designed through empirical trial-and-error. This article describes an easy-to-assemble tensegrity-based soft robot capable of highly dynamic locomotive gaits and demonstrating structural and behavioral resilience in the face of physical damage. Enabling this is the use of a machine learning algorithm able to discover effective gaits with a minimal number of physical trials. These results lend further credence to soft-robotic approaches that seek to harness the interaction of complex material dynamics to generate a wealth of dynamical behaviors.

[1]  Zoubin Ghahramani,et al.  Probabilistic machine learning and artificial intelligence , 2015, Nature.

[2]  J. Socha,et al.  Visceral-Locomotory Pistoning in Crawling Caterpillars , 2010, Current Biology.

[3]  Mark H. Overmars,et al.  Trap design for vibratory bowl feeders , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[4]  Timothy M. Mauery,et al.  COMPARISON OF RESPONSE SURFACE AND KRIGING MODELS FOR MULTIDISCIPLINARY DESIGN OPTIMIZATION , 1998 .

[5]  H. Banks Center for Research in Scientific Computationにおける研究活動 , 1999 .

[6]  Phillip J. McKerrow,et al.  Introduction to robotics , 1991 .

[7]  Nando de Freitas,et al.  A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning , 2010, ArXiv.

[8]  Kenneth Snelson,et al.  The Art of Tensegrity , 2012 .

[9]  Bogdan Gabrys,et al.  Metalearning: a survey of trends and technologies , 2013, Artificial Intelligence Review.

[10]  Huai-Ti Lin,et al.  GoQBot: a caterpillar-inspired soft-bodied rolling robot , 2011, Bioinspiration & biomimetics.

[11]  John Rieffel,et al.  Exploiting Dynamical Complexity in a Physical Tensegrity Robot to Achieve Locomotion , 2013, ECAL.

[12]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[13]  Benjamin Schrauwen,et al.  Design and control of compliant tensegrity robots through simulation and hardware validation , 2014, Journal of The Royal Society Interface.

[14]  Inman Harvey,et al.  Noise and the Reality Gap: The Use of Simulation in Evolutionary Robotics , 1995, ECAL.

[15]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Dan Reznik,et al.  The Coulomb pump: a novel parts feeding method using a horizontally-vibrating surface , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[17]  Jean-Baptiste Mouret,et al.  A New Method to Evaluate Simulation Models: The Calibration Profile (CP) Algorithm , 2015, J. Artif. Soc. Soc. Simul..

[18]  Tao Wang,et al.  Automatic Gait Optimization with Gaussian Process Regression , 2007, IJCAI.

[19]  Radhika Nagpal,et al.  Kilobot: A low cost scalable robot system for collective behaviors , 2012, 2012 IEEE International Conference on Robotics and Automation.

[20]  LipsonHod,et al.  Challenges and Opportunities for Design, Simulation, and Fabrication of Soft Robots , 2014 .

[21]  Jan Peters,et al.  An experimental comparison of Bayesian optimization for bipedal locomotion , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[22]  Abhilash Pandya,et al.  A Review of Active Mechanical Driving Principles of Spherical Robots , 2012, Robotics.

[23]  Alice M. Agogino,et al.  Inclined surface locomotion strategies for spherical tensegrity robots , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[24]  Davide Scaramuzza,et al.  SVO: Fast semi-direct monocular visual odometry , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[25]  I. Oppenheim,et al.  Vibration of an elastic tensegrity structure , 2001 .

[26]  Hilary Bart-Smith,et al.  Resonance entrainment of tensegrity structures via CPG control , 2012, Autom..

[27]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[28]  J. Dabiri,et al.  Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans , 2013, Proceedings of the National Academy of Sciences.

[29]  Jamie L. Branch,et al.  Robotic Tentacles with Three‐Dimensional Mobility Based on Flexible Elastomers , 2013, Advanced materials.

[30]  Brian T. Mirletz,et al.  Goal-Directed CPG-Based Control for Tensegrity Spines with Many Degrees of Freedom Traversing Irregular Terrain , 2015 .

[31]  Evangelos Papadopoulos,et al.  Analysis, design and control of a planar micro-robot driven by two centripetal-force actuators , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[32]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[33]  Anne Auger,et al.  Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009 , 2010, GECCO '10.

[34]  John Rieffel,et al.  Growing and Evolving Vibrationally Actuated Soft Robots , 2015, GECCO.

[35]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[36]  Shinichi Hirai,et al.  Rolling tensegrity driven by pneumatic soft actuators , 2012, 2012 IEEE International Conference on Robotics and Automation.

[37]  Yaochu Jin,et al.  Surrogate-assisted evolutionary computation: Recent advances and future challenges , 2011, Swarm Evol. Comput..

[38]  Daniela Rus,et al.  M-blocks: Momentum-driven, magnetic modular robots , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[39]  D. Ingber,et al.  Mechanical behavior in living cells consistent with the tensegrity model , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Robert J. Wood,et al.  An integrated design and fabrication strategy for entirely soft, autonomous robots , 2016, Nature.

[41]  Stéphane Doncieux,et al.  The Transferability Approach: Crossing the Reality Gap in Evolutionary Robotics , 2013, IEEE Transactions on Evolutionary Computation.

[42]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[43]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[44]  Barry A. Trimmer,et al.  New challenges in biorobotics: Incorporating soft tissue into control systems , 2008 .

[45]  Nando de Freitas,et al.  Taking the Human Out of the Loop: A Review of Bayesian Optimization , 2016, Proceedings of the IEEE.

[46]  Chandana Paul,et al.  The Tendon Network of the Fingers Performs Anatomical Computation at a Macroscopic Scale , 2007, IEEE Transactions on Biomedical Engineering.

[47]  Dan Reznik,et al.  Building a Universal Planar Manipulator , 2000 .

[48]  Antoine Cully,et al.  Robots that can adapt like animals , 2014, Nature.

[49]  Jean-Baptiste Mouret,et al.  Illuminating search spaces by mapping elites , 2015, ArXiv.

[50]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[51]  Stefan Schaal,et al.  Policy Gradient Methods for Robotics , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[52]  V. Tucker Energetic cost of locomotion in animals. , 1970, Comparative biochemistry and physiology.

[53]  Robert J. Wood,et al.  A 3D-printed, functionally graded soft robot powered by combustion , 2015, Science.

[54]  Andy J. Keane,et al.  Recent advances in surrogate-based optimization , 2009 .

[55]  Francis L. Merat,et al.  Introduction to robotics: Mechanics and control , 1987, IEEE J. Robotics Autom..

[56]  Germán Sumbre,et al.  Neurobiology: Motor control of flexible octopus arms , 2005, Nature.

[57]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[58]  Klaus Zimmermann,et al.  Vibration-driven mobile robots based on single actuated tensegrity structures , 2013, 2013 IEEE International Conference on Robotics and Automation.

[59]  Álvaro Cassinelli,et al.  Ratchair: furniture learns to move itself with vibration , 2016, SIGGRAPH Emerging Technologies.

[60]  R. Pfeifer,et al.  Self-Organization, Embodiment, and Biologically Inspired Robotics , 2007, Science.

[61]  John Rieffel,et al.  Evolution of Locomotion on a Physical Tensegrity Robot , 2014 .

[62]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .