Stochastic gradient with changing forgetting factor-based parameter identification for Wiener systems

Abstract The parameter estimation problem is considered for a class Wiener systems. First, the effect of the forgetting factor on the stochastic gradient algorithm is analyzed. Then, a Wiener system stochastic gradient with a changing forgetting factor algorithm is presented which makes full use of the forgetting factor. Finally, an example is provided to test and verify the effectiveness of the proposed algorithms.

[1]  Xiangli Li,et al.  Gradient-based iterative identification for MISO Wiener nonlinear systems: Application to a glutamate fermentation process , 2013, Appl. Math. Lett..

[2]  Fredrik Lindsten,et al.  Bayesian semiparametric Wiener system identification , 2013, Autom..

[3]  Xin-Ping Guan,et al.  Identification of Wiener model using step signals and particle swarm optimization , 2010, Expert Syst. Appl..

[4]  Kristiaan Pelckmans,et al.  MINLIP for the identification of monotone Wiener systems , 2010, Autom..

[5]  José Luis Figueroa,et al.  An approach for identification of uncertain Wiener systems , 2008, Math. Comput. Model..

[6]  Feng Ding,et al.  Least squares based and gradient based iterative identification for Wiener nonlinear systems , 2011, Signal Process..

[7]  Ruifeng Ding,et al.  Multi-innovation stochastic gradient algorithms for dual-rate sampled systems with preload nonlinearity , 2013, Appl. Math. Lett..

[8]  Han-Fu Chen,et al.  Recursive Identification of MIMO Wiener Systems , 2013, IEEE Transactions on Automatic Control.

[9]  Mario Sznaier,et al.  Risk Adjusted Set Membership Identification of Wiener Systems , 2009, IEEE Transactions on Automatic Control.

[10]  F. Ding Coupled-least-squares identification for multivariable systems , 2013 .

[11]  Ruifeng Ding,et al.  Iterative identification algorithm for Wiener nonlinear systems using the Newton method , 2013 .

[12]  Xiao-Li Hu,et al.  Strong consistence of recursive identification for Wiener systems , 2005, Autom..

[13]  Martin Kozek,et al.  Identification of Wiener models using optimal local linear models , 2008, Simul. Model. Pract. Theory.

[14]  Wu Min,et al.  A continuous-time identification method for parameter estimation of Nonlinear dynamic load models of power systems , 2012 .

[15]  L. Ljung,et al.  Maximum Likelihood Identification of Wiener Models , 2008 .

[16]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[17]  Junxia Ma,et al.  An iterative numerical algorithm for modeling a class of Wiener nonlinear systems , 2013, Appl. Math. Lett..

[18]  Gianluigi Pillonetto,et al.  Consistent identification of Wiener systems: A machine learning viewpoint , 2013, Autom..

[19]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[20]  Feng Ding,et al.  Hierarchical gradient based and hierarchical least squares based iterative parameter identification for CARARMA systems , 2014, Signal Process..

[21]  J. Chu,et al.  Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle , 2013 .