A revisit to inverse optimality of linear systems

In this article, we revisit the problem of inverse optimality for linear systems. By applying certain explicit formulae for coprime matrix fraction descriptions (CMFD) of linear systems, we propose a necessary and sufficient condition for a given stable state feedback law to be optimal for some quadratic performance index. Compared to existing results in the literature, the proposed condition is simpler to check and interpret. Moreover, it reduces the redundancy in the solutions of the associated algebraic Riccati equation (ARE). As a direct application of the proposed results, we consider the problem of inverse optimality of observer-based state feedback. To be specific, for the case where the state is not fully known, we consider the inverse optimality problem of an observer-based state feedback for the closed-loop system augmented by an observer. More precisely, it is shown that the observer-based state feedback is inverse optimal for the closed-loop system with some general forms of cost functions, only if the original state feedback is inverse optimal for the original system with certain cost functions, irrespective of the choice of the observer. This coincides with existing results in the literature. Some other applications of the proposed results are also discussed. We also illustrate the proposed results through an example.

[1]  B. Anderson,et al.  Nonlinear regulator theory and an inverse optimal control problem , 1973 .

[2]  Suguru Arimoto,et al.  Performance deterioration of optimal regulators incorporating state estimators , 1974 .

[3]  D. Bernstein,et al.  Controller design with regional pole constraints , 1992 .

[4]  Jacques L. Willems,et al.  The return difference for discrete-time optimal feedback systems , 1978, Autom..

[5]  T. Fujii,et al.  A new approach to the LQ design from the viewpoint of the inverse regulator problem , 1987 .

[6]  Liuping Wang,et al.  Model Predictive Control System Design and Implementation Using MATLAB , 2009 .

[7]  J. Willems,et al.  Inverse optimal control problem for linear discrete-time systems , 1977 .

[8]  G. Duan Analysis and Design of Descriptor Linear Systems , 2010 .

[9]  Kwang Y. Lee,et al.  An Inverse Optimal Control Problem and Its Application to the Choice of Performance Index for Economic Stabilization Policy , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  Mohamed Darouach,et al.  Discrete time lq design from the viewpoint of the inverse optimal regulator , 1994 .

[11]  Guang-Ren Duan,et al.  Optimal pole assignment for discrete-time systems via Stein equations , 2009 .

[12]  Victor Sreeram,et al.  Characterization and selection of global optimal output feedback gains for linear time-invariant systems , 2000 .

[13]  G. Gu On the existence of linear optimal control with output feedback , 1990 .

[14]  Graham C. Goodwin,et al.  Constrained Control and Estimation: an Optimization Approach , 2004, IEEE Transactions on Automatic Control.

[15]  Guang-Ren Duan,et al.  A Stein equation approach for solutions to the Bezout identity and the generalized Bezout identity , 2009, 2009 7th Asian Control Conference.

[16]  D. Meyer,et al.  A connection between normalized coprime factorizations and linear quadratic regulator theory , 1987 .

[17]  Takao Fujii,et al.  The optimality property of an optimal regulator incorporating an observer , 1981 .

[18]  P. Kokotovic,et al.  Inverse Optimality in Robust Stabilization , 1996 .

[19]  John O'Reilly,et al.  Observers for Linear Systems , 1983 .

[20]  Da-Zhong Zheng Some new results on optimal and suboptimal regulators of the LQ problem with output feedback , 1989 .

[21]  Tsu-Tian Lee,et al.  Optimal static output feedback simultaneous regional pole placement , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[22]  Edward N. Hartley,et al.  Initial tuning of predictive controllers by reverse engineering , 2009, 2009 European Control Conference (ECC).

[23]  Arun K. Majumdar,et al.  Invariant description of linear regulator problems and reduction of the algebraic Riccati equation , 1984 .

[24]  J. Karl Hedrick,et al.  On equivalence of quadratic loss functions , 1970 .

[25]  B. Molinari Redundancy in linear optimum regulator problem , 1971 .

[26]  C. Storey,et al.  Insensitivity of Optimal Linear Control Systems to Persistent Changes in Parameters , 1966 .

[27]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[28]  Carlos E. de Souza,et al.  A necessary and sufficient condition for output feedback stabilizability , 1995, Autom..

[29]  Peter C. Young,et al.  Non-minimal state-space model-based continuous-time model predictive control with constraints , 2009, Int. J. Control.

[30]  R. E. Kalman,et al.  When Is a Linear Control System Optimal , 1964 .

[31]  B. Molinari The stable regulator problem and its inverse , 1973 .

[32]  Mathias Foo,et al.  On reproducing existing controllers as Model Predictive controllers , 2011, 2011 Australian Control Conference.

[33]  A. Jameson,et al.  Optimality of linear control systems , 1972 .

[34]  B. Porter,et al.  Performance deterioration of optimal regulators incorporating Kalman filters , 1973 .

[35]  Darci Odloak,et al.  Infinite horizon MPC with non-minimal state space feedback , 2009 .

[36]  V. Kučera A contribution to matrix quadratic equations , 1972 .

[37]  E. Kinnen,et al.  The inverse problem of the optimal regulator , 1972 .

[38]  M. Krstic,et al.  Inverse optimal design of input-to-state stabilizing nonlinear controllers , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[39]  Suguru Arimoto,et al.  Performance Deterioration of Optimal Regulators Incorporating Kalman Filter , 1973 .

[40]  G. Goodwin,et al.  The class of all stable unbiased state estimators , 1989 .

[41]  D. Youla,et al.  On observers in multi-variable control systems† , 1968 .

[42]  J. Casti On the general inverse problem of optimal control theory , 1980 .

[43]  J. J. Bongiorno,et al.  Discussion of “On observers in multi-variable control systems” , 1970 .

[44]  D. Luenberger An introduction to observers , 1971 .

[45]  Bin Zhou,et al.  A Stein equation approach for solutions to the Diophantine equations , 2010, 2010 Chinese Control and Decision Conference.

[46]  L. J. Hellinckx,et al.  Optimal control of linear multivariable systems with quadratic performance index, and the inverse optimal control problem , 1974 .

[47]  Graham C. Goodwin,et al.  Constrained Control and Estimation , 2005 .

[48]  Graham C. Goodwin,et al.  Predictive Metamorphic Control , 2011, 2011 8th Asian Control Conference (ASCC).

[49]  P. Young,et al.  An improved structure for model predictive control using non-minimal state space realisation , 2006 .

[50]  A. Jameson,et al.  Inverse Problem of Linear Optimal Control , 1973 .

[51]  Boumediene Hamzi Some results on inverse optimality based designs , 2001, Syst. Control. Lett..

[52]  Clyde Martin Equivalence of quadratic performance criteria , 1973 .

[53]  Zongli Lin,et al.  Unified Gradient Approach to Performance Optimization Under a Pole Assignment Constraint , 2002 .

[54]  Graham C. Goodwin,et al.  Control System Design , 2000 .

[55]  Alberto Bemporad,et al.  Model Predictive Control Tuning by Controller Matching , 2010, IEEE Transactions on Automatic Control.

[56]  Takao Fujii,et al.  A complete optimally condition in the inverse problem of optimal control , 1984, The 23rd IEEE Conference on Decision and Control.

[57]  Kenji Sugimoto,et al.  New solution to the inverse regulator problem by the polynomial matrix method , 1987 .

[58]  Yutaka Yamamoto,et al.  Solution to the inverse regulator problem for discrete-time systems , 1988 .

[59]  B. Anderson,et al.  Linear Optimal Control , 1971 .

[60]  D. G. Meyer,et al.  The construction of special coprime factorizations in discrete time , 1990 .

[61]  C. Jacobson,et al.  A connection between state-space and doubly coprime fractional representations , 1984 .

[62]  Takao Fujii,et al.  A complete solution to the inverse problem of optimal control , 1982, 1982 21st IEEE Conference on Decision and Control.