Estimating Reflectance Parameters of an Object from Saturated Spectral Images

A method is described to reproduce reflection properties at the surface of real objects using spectral images, which are often saturated because of the limited dynamic range of image detectors. Reflection components are separated into diffuse and specular reflection components based on the dichromatic model at 5-nm wavelength intervals between 380 nm and 780 nm for each pixel of the spectral images, and diffuse reflectance parameters are estimated during the separation. To estimate specular reflectance parameters, the Gaussian distribution function of the Torrance-Sparrow reflection model is transformed logarithmically to a linear form, and the unsaturated values of the specular reflection components are subjected to the least squares method. Experimental results with a real object demonstrate the efficiency of the proposed method

[1]  Markku Hauta-Kasari,et al.  Spectral-Based Illumination Estimation and Color Correction , 1999 .

[2]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[3]  Yoshitsugu Manabe,et al.  Estimating reflectance parameters from saturated spectral images , 2006, Electronic Imaging.

[4]  Shree K. Nayar,et al.  High Dynamic Range from Multiple Images: Which Exposures to Combine?∗ , 2003 .

[5]  Katsushi Ikeuchi,et al.  Temporal-color space analysis of reflection , 1994 .

[6]  Seiji Inokuchi,et al.  Recognition of material types using spectral image , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[7]  Kunihiro Chihara,et al.  Color and gloss reproduction from multispectral images , 2005, IS&T/SPIE Electronic Imaging.

[8]  Sang Wook Lee,et al.  Detection of diffuse and specular interface reflections and inter-reflections by color image segmentation , 1996, International Journal of Computer Vision.

[9]  Takeo Kanade,et al.  The measurement of highlights in color images , 1988, International Journal of Computer Vision.

[10]  Terrance E. Boult,et al.  Constraining Object Features Using a Polarization Reflectance Model , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Gary W. Meyer,et al.  Wavelength dependent reflectance functions , 1994, SIGGRAPH.

[12]  Mark S. Drew,et al.  A spectrally based framework for realistic image synthesis , 2001, The Visual Computer.

[13]  Jitendra Malik,et al.  Recovering high dynamic range radiance maps from photographs , 1997, SIGGRAPH.

[14]  Naokazu Yokoya,et al.  Surface reflectance modeling of real objects with interreflections , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[15]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[16]  Katsushi Ikeuchi,et al.  Separating Reflection Components of Textured Surfaces Using a Single Image , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Katsushi Ikeuchi,et al.  Temporal-color space analysis of reflection , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Shree K. Nayar,et al.  Separation of Reflection Components Using Color and Polarization , 1997, International Journal of Computer Vision.

[19]  Shree K. Nayar,et al.  High dynamic range imaging: spatially varying pixel exposures , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[20]  Katsushi Ikeuchi,et al.  Separating reflection components of textured surfaces using a single image , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Katsushi Ikeuchi,et al.  Object shape and reflectance modeling from observation , 1997, SIGGRAPH.