Intracranial Electrophysiology of the Human Default Network

[1]  David M. Groppe,et al.  Corticocortical Evoked Potentials Reveal Projectors and Integrators in Human Brain Networks , 2014, The Journal of Neuroscience.

[2]  P. Bandettini,et al.  The effect of respiration variations on independent component analysis results of resting state functional connectivity , 2008, Human brain mapping.

[3]  Philip J. Hahn,et al.  Network perspectives on the mechanisms of deep brain stimulation , 2010, Neurobiology of Disease.

[4]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[5]  C. Honey,et al.  Mapping human brain networks with cortico-cortical evoked potentials , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[6]  O. Sporns Contributions and challenges for network models in cognitive neuroscience , 2014, Nature Neuroscience.

[7]  I. Fried,et al.  Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex , 2008, Nature Neuroscience.

[8]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[9]  R. Nathan Spreng,et al.  The wandering brain: Meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes , 2015, NeuroImage.

[10]  E. F. Chang,et al.  Sub-centimeter language organization in the human temporal lobe , 2011, Brain and Language.

[11]  B. Foster,et al.  Direct cortical stimulation of human posteromedial cortex , 2017, Neurology.

[12]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[13]  Jonathan D. Power,et al.  Intrinsic and Task-Evoked Network Architectures of the Human Brain , 2014, Neuron.

[14]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[15]  D. Schacter,et al.  The Brain's Default Network , 2008, Annals of the New York Academy of Sciences.

[16]  M. Sigman,et al.  Signature of consciousness in the dynamics of resting-state brain activity , 2015, Proceedings of the National Academy of Sciences.

[17]  D. Paré,et al.  Contrasting Activity Profile of Two Distributed Cortical Networks as a Function of Attentional Demands , 2009, The Journal of Neuroscience.

[18]  A. Shmuel,et al.  Sustained Negative BOLD, Blood Flow and Oxygen Consumption Response and Its Coupling to the Positive Response in the Human Brain , 2002, Neuron.

[19]  D. Heeger,et al.  Slow Cortical Dynamics and the Accumulation of Information over Long Timescales , 2012, Neuron.

[20]  M. Esterman,et al.  Spontaneous default network activity reflects behavioral variability independent of mind-wandering , 2016, Proceedings of the National Academy of Sciences.

[21]  I. Fried,et al.  Coupling between Neuronal Firing Rate, Gamma LFP, and BOLD fMRI Is Related to Interneuronal Correlations , 2007, Current Biology.

[22]  M. Carandini,et al.  Local Origin of Field Potentials in Visual Cortex , 2009, Neuron.

[23]  Evan M. Gordon,et al.  Individual Variability of the System‐Level Organization of the Human Brain , 2015, Cerebral cortex.

[24]  E. Bullmore,et al.  Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: The orbitofronto-striatal model revisited , 2008, Neuroscience & Biobehavioral Reviews.

[25]  Drew S. Kern,et al.  Deep Brain Stimulation , 2007, The neurologist.

[26]  Evan M. Gordon,et al.  Functional System and Areal Organization of a Highly Sampled Individual Human Brain , 2015, Neuron.

[27]  K. Christoff,et al.  Experience sampling during fMRI reveals default network and executive system contributions to mind wandering , 2009, Proceedings of the National Academy of Sciences.

[28]  C. Schroeder,et al.  Spatial characterization of interictal high frequency oscillations in epileptic neocortex , 2009, Brain : a journal of neurology.

[29]  B T Thomas Yeo,et al.  Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[30]  Michael J. Kahana,et al.  Direct brain recordings fuel advances in cognitive electrophysiology , 2010, Trends in Cognitive Sciences.

[31]  S. Rombouts,et al.  Consistent resting-state networks across healthy subjects , 2006, Proceedings of the National Academy of Sciences.

[32]  Daniel P. Kennedy,et al.  Differential electrophysiological response during rest, self-referential, and non–self-referential tasks in human posteromedial cortex , 2011, Proceedings of the National Academy of Sciences.

[33]  Jonathan Winawer,et al.  Asynchronous Broadband Signals Are the Principal Source of the BOLD Response in Human Visual Cortex , 2013, Current Biology.

[34]  M. Raichle Two views of brain function , 2010, Trends in Cognitive Sciences.

[35]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: II. Cortical afferents , 2003, The Journal of comparative neurology.

[36]  M. Fox,et al.  Individual Variability in Functional Connectivity Architecture of the Human Brain , 2013, Neuron.

[37]  Benjamin J. Shannon,et al.  Functional-Anatomic Correlates of Memory Retrieval That Suggest Nontraditional Processing Roles for Multiple Distinct Regions within Posterior Parietal Cortex , 2004, The Journal of Neuroscience.

[38]  R. Buckner,et al.  Parcellating Cortical Functional Networks in Individuals , 2015, Nature Neuroscience.

[39]  N. Logothetis,et al.  The effects of electrical microstimulation on cortical signal propagation , 2010, Nature Neuroscience.

[40]  M. Vink,et al.  Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder , 2013, Nature Neuroscience.

[41]  Nader Pouratian,et al.  Single-Neuron Representation of Memory Strength and Recognition Confidence in Left Human Posterior Parietal Cortex , 2018, Neuron.

[42]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[43]  E. Niebur,et al.  Neural Correlates of High-Gamma Oscillations (60–200 Hz) in Macaque Local Field Potentials and Their Potential Implications in Electrocorticography , 2008, The Journal of Neuroscience.

[44]  Benjamin Y. Hayden,et al.  Human Neuroscience , 2022 .

[45]  O Bertrand,et al.  Silence is golden: transient neural deactivation in the prefrontal cortex during attentive reading. , 2008, Cerebral cortex.

[46]  H. Lüders,et al.  Functional connectivity in the human language system: a cortico-cortical evoked potential study. , 2004, Brain : a journal of neurology.

[47]  N. Ramsey,et al.  Neurophysiologic correlates of fMRI in human motor cortex , 2012, Human brain mapping.

[48]  J. Maunsell,et al.  Different Origins of Gamma Rhythm and High-Gamma Activity in Macaque Visual Cortex , 2011, PLoS biology.

[49]  M. Greicius,et al.  The Will to Persevere Induced by Electrical Stimulation of the Human Cingulate Gyrus , 2013, Neuron.

[50]  Fabrice Wendling,et al.  Update on the mechanisms and roles of high‐frequency oscillations in seizures and epileptic disorders , 2017, Epilepsia.

[51]  R. N. Spreng,et al.  The default network and self‐generated thought: component processes, dynamic control, and clinical relevance , 2014, Annals of the New York Academy of Sciences.

[52]  K. Foote,et al.  Deep Brain Stimulation for Treatment-resistant Depression: Systematic Review of Clinical Outcomes , 2014, Neurotherapeutics.

[53]  A. Baddeley,et al.  Stimulus-independent thought depends on central executive resources , 1995, Memory & cognition.

[54]  J. Geddes,et al.  Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis , 2009, The Lancet.

[55]  Justin L. Vincent,et al.  Intrinsic functional architecture in the anaesthetized monkey brain , 2007, Nature.

[56]  Fenna M. Krienen,et al.  Opportunities and limitations of intrinsic functional connectivity MRI , 2013, Nature Neuroscience.

[57]  Rebecca M. Todd,et al.  Dynamics of neural recruitment surrounding the spontaneous arising of thoughts in experienced mindfulness practitioners , 2016, NeuroImage.

[58]  François Mauguière,et al.  Brain responses to success and failure: Direct recordings from human cerebral cortex , 2010, Human brain mapping.

[59]  Stephen M. Smith,et al.  Investigations into resting-state connectivity using independent component analysis , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[60]  Michael W. Cole,et al.  The role of default network deactivation in cognition and disease , 2012, Trends in Cognitive Sciences.

[61]  Royston M. Roberts,et al.  Serendipity: Accidental Discoveries in Science , 1989 .

[62]  J. Ojemann,et al.  Quasi-periodic Fluctuations in Default Mode Network Electrophysiology , 2011, The Journal of Neuroscience.

[63]  Randy L. Buckner,et al.  The serendipitous discovery of the brain's default network , 2012, NeuroImage.

[64]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[65]  Marcus E Raichle,et al.  A Paradigm Shift in Functional Brain Imaging , 2009, The Journal of Neuroscience.

[66]  A. Lozano,et al.  Subcallosal Cingulate Gyrus Deep Brain Stimulation for Treatment-Resistant Depression , 2008, Biological Psychiatry.

[67]  Kurt E. Weaver,et al.  Identifying Functional Networks Using Endogenous Connectivity in Gamma Band Electrocorticography , 2013, Brain Connect..

[68]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[69]  J. Parvizi,et al.  Human Neuroscience , 2022 .

[70]  R. Nathan Spreng,et al.  The Common Neural Basis of Autobiographical Memory, Prospection, Navigation, Theory of Mind, and the Default Mode: A Quantitative Meta-analysis , 2009, Journal of Cognitive Neuroscience.

[71]  B. Levine,et al.  The functional neuroanatomy of autobiographical memory: A meta-analysis , 2006, Neuropsychologia.

[72]  Giacomo Koch,et al.  A common polymorphism in the brain‐derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS , 2008, The Journal of physiology.

[73]  Zachary C. Irving,et al.  Mind-wandering as spontaneous thought: a dynamic framework , 2016, Nature Reviews Neuroscience.

[74]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[75]  Michael J. Randazzo,et al.  Network effects of deep brain stimulation. , 2015, Journal of neurophysiology.

[76]  David M. Groppe,et al.  Evoked effective connectivity of the human neocortex , 2014, Human brain mapping.

[77]  Matthew L. Dixon,et al.  A framework for understanding the relationship between externally and internally directed cognition , 2014, Neuropsychologia.

[78]  I. Fried,et al.  A Widely Distributed Spectral Signature of Task-Negative Electrocorticography Responses Revealed during a Visuomotor Task in the Human Cortex , 2012, The Journal of Neuroscience.

[79]  Brian D. Mills,et al.  Large-scale topology and the default mode network in the mouse connectome , 2014, Proceedings of the National Academy of Sciences.

[80]  Georg Northoff,et al.  Self-referential processing in our brain—A meta-analysis of imaging studies on the self , 2006, NeuroImage.

[81]  D. Siskind,et al.  Deep brain stimulation for obsessive–compulsive disorder: a systematic review and meta-analysis , 2014, Psychological Medicine.

[82]  Rajesh P. N. Rao,et al.  Spectral Changes in Cortical Surface Potentials during Motor Movement , 2007, The Journal of Neuroscience.

[83]  E. Underwood Cadaver study casts doubts on how zapping brain may boost mood, relieve pain , 2016 .

[84]  G. Deuschl,et al.  A randomized trial of deep-brain stimulation for Parkinson's disease. , 2006, The New England journal of medicine.

[85]  I. Fried,et al.  Coupling Between Neuronal Firing, Field Potentials, and fMRI in Human Auditory Cortex , 2005, Science.

[86]  G. Buzsáki Rhythms of the brain , 2006 .

[87]  Rodrigo M. Braga,et al.  Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity , 2017, Neuron.

[88]  R. Yuste From the neuron doctrine to neural networks , 2015, Nature Reviews Neuroscience.

[89]  Keith Johnson,et al.  Phonetic Feature Encoding in Human Superior Temporal Gyrus , 2014, Science.

[90]  M. Raichle,et al.  Cortical network functional connectivity in the descent to sleep , 2009, Proceedings of the National Academy of Sciences.

[91]  C. Kelly,et al.  Correction for Roberts et al., Isocyanic acid in the atmosphere and its possible link to smoke-related health effects , 2011, Proceedings of the National Academy of Sciences.

[92]  James J. Evans,et al.  Theta and High-Frequency Activity Mark Spontaneous Recall of Episodic Memories , 2014, The Journal of Neuroscience.

[93]  I. Fried,et al.  Internally Generated Reactivation of Single Neurons in Human Hippocampus During Free Recall , 2008, Science.

[94]  M. Boly,et al.  Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. , 2010, Brain : a journal of neurology.

[95]  D. Sharp,et al.  Fractionating the Default Mode Network: Distinct Contributions of the Ventral and Dorsal Posterior Cingulate Cortex to Cognitive Control , 2011, The Journal of Neuroscience.

[96]  Daniel S. Margulies,et al.  Mapping the functional connectivity of anterior cingulate cortex , 2007, NeuroImage.

[97]  Mohammad Dastjerdi,et al.  Neural populations in human posteromedial cortex display opposing responses during memory and numerical processing , 2012, Proceedings of the National Academy of Sciences.

[98]  Giuseppe Pagnoni,et al.  A comparison of resting-state brain activity in humans and chimpanzees , 2007, Proceedings of the National Academy of Sciences.

[99]  D. Fontaine,et al.  Deep Brain Stimulation for Psychiatric Diseases: What Are the Risks? , 2015, Current Psychiatry Reports.

[100]  David M. Groppe,et al.  Neurophysiological Investigation of Spontaneous Correlated and Anticorrelated Fluctuations of the BOLD Signal , 2013, The Journal of Neuroscience.

[101]  Carl D. Hacker,et al.  Frequency-specific electrophysiologic correlates of resting state fMRI networks , 2017, NeuroImage.

[102]  B. Foster,et al.  Intrinsic and Task-Dependent Coupling of Neuronal Population Activity in Human Parietal Cortex , 2015, Neuron.

[103]  K. Miller Broadband Spectral Change: Evidence for a Macroscale Correlate of Population Firing Rate? , 2010, The Journal of Neuroscience.

[104]  G. Buzsáki ReviewTheta Oscillations in the Hippocampus , 2002 .

[105]  E. Adrian,et al.  THE BERGER RHYTHM: POTENTIAL CHANGES FROM THE OCCIPITAL LOBES IN MAN , 1934 .

[106]  M. Raichle,et al.  Rat brains also have a default mode network , 2012, Proceedings of the National Academy of Sciences.

[107]  M. Greicius,et al.  Resting-state functional connectivity reflects structural connectivity in the default mode network. , 2009, Cerebral cortex.

[108]  G. V. Van Hoesen,et al.  Neural connections of the posteromedial cortex in the macaque , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[109]  J. Binder,et al.  A Parametric Manipulation of Factors Affecting Task-induced Deactivation in Functional Neuroimaging , 2003, Journal of Cognitive Neuroscience.

[110]  Francois-Xavier Alario,et al.  Simultaneous recording of MEG, EEG and intracerebral EEG during visual stimulation: From feasibility to single-trial analysis , 2014, NeuroImage.

[111]  Josef Parvizi,et al.  Promises and limitations of human intracranial electroencephalography , 2018, Nature Neuroscience.

[112]  G. Ojemann,et al.  Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. , 1989, Journal of neurosurgery.

[113]  J. Andrews-Hanna,et al.  Large-Scale Network Dysfunction in Major Depressive Disorder: A Meta-analysis of Resting-State Functional Connectivity. , 2015, JAMA psychiatry.

[114]  John S. Thornton,et al.  Functional MRI with active, fully implanted, deep brain stimulation systems: Safety and experimental confounds , 2007, NeuroImage.

[115]  Daniel J Mitchell,et al.  Recruitment of the default mode network during a demanding act of executive control , 2015, eLife.

[116]  Roberts Bartholow,et al.  Art. I.—Experimental Investigations into the Functions of the Human Brain. , 1874 .

[117]  David A. Leopold,et al.  Functional Subpopulations of Neurons in a Macaque Face Patch Revealed by Single-Unit fMRI Mapping , 2017, Neuron.

[118]  John S. Thornton,et al.  Feasibility of simultaneous intracranial EEG-fMRI in humans: A safety study , 2010, NeuroImage.

[119]  D. De Ridder,et al.  State of the Art: Novel Applications for Cortical Stimulation , 2017, Neuromodulation : journal of the International Neuromodulation Society.

[120]  D. De Ridder,et al.  Visions on the future of medical devices in spinal cord stimulation: what medical device is needed? , 2016, Expert review of medical devices.

[121]  M. Raichle The brain's default mode network. , 2015, Annual review of neuroscience.

[122]  A. Lozano,et al.  Deep Brain Stimulation for Treatment-Resistant Depression , 2005, Neuron.

[123]  Kristina M. Visscher,et al.  The neural bases of momentary lapses in attention , 2006, Nature Neuroscience.

[124]  Alana T. Wong,et al.  Remembering the past and imagining the future: Common and distinct neural substrates during event construction and elaboration , 2007, Neuropsychologia.

[125]  A. Bose,et al.  Transcranial direct current stimulation and neuroplasticity genes: implications for psychiatric disorders , 2015, Acta Neuropsychiatrica.

[126]  Karim Jerbi,et al.  Simultaneous MEG and intracranial EEG recordings during attentive reading , 2009, NeuroImage.

[127]  Sabine Kastner,et al.  Electrophysiological Low-Frequency Coherence and Cross-Frequency Coupling Contribute to BOLD Connectivity , 2012, Neuron.

[128]  Juan R. Vidal,et al.  Transient Suppression of Broadband Gamma Power in the Default-Mode Network Is Correlated with Task Complexity and Subject Performance , 2011, The Journal of Neuroscience.

[129]  B. Hayden,et al.  Electrophysiological correlates of default-mode processing in macaque posterior cingulate cortex , 2009, Proceedings of the National Academy of Sciences.

[130]  J. Andrews-Hanna,et al.  The neurobiology of self-generated thought from cells to systems: Integrating evidence from lesion studies, human intracranial electrophysiology, neurochemistry, and neuroendocrinology , 2016, Neuroscience.

[131]  O. Sporns,et al.  Network neuroscience , 2017, Nature Neuroscience.

[132]  R. Buckner,et al.  Functional-Anatomic Fractionation of the Brain's Default Network , 2010, Neuron.

[133]  M. Corbetta,et al.  Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex , 1997, Journal of Cognitive Neuroscience.

[134]  H. Westenberg,et al.  Dysfunctional Reward Circuitry in Obsessive-Compulsive Disorder , 2011, Biological Psychiatry.

[135]  K. Miller,et al.  Human Retrosplenial Cortex Displays Transient Theta Phase Locking with Medial Temporal Cortex Prior to Activation during Autobiographical Memory Retrieval , 2013, The Journal of Neuroscience.

[136]  Philippe Kahane,et al.  Exploring the electrophysiological correlates of the default ‐ mode network with intracerebral EEG , 2022 .

[137]  N. Logothetis,et al.  Direct electrical stimulation of human cortex — the gold standard for mapping brain functions? , 2011, Nature Reviews Neuroscience.

[138]  Scott T. Grafton,et al.  Wandering Minds: The Default Network and Stimulus-Independent Thought , 2007, Science.

[139]  M. Berger,et al.  High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex , 2006, Science.

[140]  Josef Parvizi,et al.  Resting oscillations and cross-frequency coupling in the human posteromedial cortex , 2012, NeuroImage.

[141]  W. Newsome,et al.  Local Field Potential in Cortical Area MT: Stimulus Tuning and Behavioral Correlations , 2006, The Journal of Neuroscience.

[142]  G. Shulman,et al.  Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[143]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[144]  H. Berger,et al.  Über das Elektrenkephalogramm des Menschen , 1937, Archiv für Psychiatrie und Nervenkrankheiten.

[145]  T. Poggio,et al.  Object Selectivity of Local Field Potentials and Spikes in the Macaque Inferior Temporal Cortex , 2006, Neuron.

[146]  K. Miller,et al.  Direct electrophysiological measurement of human default network areas , 2009, Proceedings of the National Academy of Sciences.

[147]  Paul E Holtzheimer,et al.  Deep brain stimulation for psychiatric disorders. , 2011, Annual review of neuroscience.

[148]  Jeremy R. Manning,et al.  Broadband Shifts in Local Field Potential Power Spectra Are Correlated with Single-Neuron Spiking in Humans , 2009, The Journal of Neuroscience.

[149]  N. Logothetis,et al.  Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. , 2003, Cerebral cortex.

[150]  R. Poldrack,et al.  Distinct Patterns of Temporal and Directional Connectivity among Intrinsic Networks in the Human Brain , 2017, The Journal of Neuroscience.

[151]  M. Raichle,et al.  Searching for a baseline: Functional imaging and the resting human brain , 2001, Nature Reviews Neuroscience.

[152]  W. Singer,et al.  Hemodynamic Signals Correlate Tightly with Synchronized Gamma Oscillations , 2005, Science.

[153]  W. Singer,et al.  Stimulus‐Dependent Neuronal Oscillations in Cat Visual Cortex: Inter‐Columnar Interaction as Determined by Cross‐Correlation Analysis , 1990, The European journal of neuroscience.

[154]  Walter Paulus,et al.  Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases , 2014, NeuroImage.

[155]  B. Harrison,et al.  Altered Cortico-Striatal Functional Connectivity in Obsessive-Compulsive Disorder , 2009, NeuroImage.

[156]  J. Ford,et al.  Default mode network activity and connectivity in psychopathology. , 2012, Annual review of clinical psychology.

[157]  R. Buckner,et al.  Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases , 2014, Proceedings of the National Academy of Sciences.

[158]  W. Penfield,et al.  SOMATIC MOTOR AND SENSORY REPRESENTATION IN THE CEREBRAL CORTEX OF MAN AS STUDIED BY ELECTRICAL STIMULATION , 1937 .

[159]  Alexander L Green,et al.  State of the Art: Novel Applications for Deep Brain Stimulation , 2018, Neuromodulation : journal of the International Neuromodulation Society.