On the Complexity of UC Commitments

Motivated by applications to secure multiparty computation, we study the complexity of realizing universally composable (UC) commitments. Several recent works obtain practical UC commitment protocols in the common reference string (CRS) model under the DDH assumption. These protocols have two main disadvantages. First, even when applied to long messages, they can only achieve a small constant rate (namely, the communication complexity is larger than the length of the message by a large constant factor). Second, they require computationally expensive public-key operations for each block of each message being committed.

[1]  Yehuda Lindell,et al.  Universally composable two-party and multi-party secure computation , 2002, STOC '02.

[2]  Joe Kilian,et al.  Founding crytpography on oblivious transfer , 1988, STOC '88.

[3]  Aggelos Kiayias,et al.  Self Protecting Pirates and Black-Box Traitor Tracing , 2001, CRYPTO.

[4]  Brent Waters,et al.  A Framework for Efficient and Composable Oblivious Transfer , 2008, CRYPTO.

[5]  Jesper Buus Nielsen,et al.  Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-committing Encryption Case , 2002, CRYPTO.

[6]  David Pointcheval,et al.  Analysis and Improvement of Lindell's UC-Secure Commitment Schemes , 2013, IACR Cryptol. ePrint Arch..

[7]  David Pointcheval,et al.  SPHF-Friendly Non-interactive Commitments , 2013, ASIACRYPT.

[8]  Daniel Kraschewski,et al.  Complete Primitives for Information-Theoretically Secure Two-Party Computation , 2013 .

[9]  Kaoru Kurosawa,et al.  Public-Key Cryptography – PKC 2013 , 2013, Lecture Notes in Computer Science.

[10]  Moti Yung,et al.  Advances in Cryptology — CRYPTO 2002 , 2002, Lecture Notes in Computer Science.

[11]  Ivan Damgård,et al.  Perfect Hiding and Perfect Binding Universally Composable Commitment Schemes with Constant Expansion Factor , 2001, CRYPTO.

[12]  Tal Malkin,et al.  Simple, Black-Box Constructions of Adaptively Secure Protocols , 2009, TCC.

[13]  Marc Fischlin,et al.  Non-interactive and Re-usable Universally Composable String Commitments with Adaptive Security , 2011, ASIACRYPT.

[14]  Nigel P. Smart,et al.  Advances in Cryptology - EUROCRYPT 2008, 27th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings , 2008, EUROCRYPT.

[15]  Phong Q. Nguyen,et al.  Advances in Cryptology – EUROCRYPT 2013 , 2013, Lecture Notes in Computer Science.

[16]  Ran Canetti,et al.  Advances in Cryptology – CRYPTO 2012 , 2012, Lecture Notes in Computer Science.

[17]  Charanjit S. Jutla,et al.  Shorter Quasi-Adaptive NIZK Proofs for Linear Subspaces , 2013, ASIACRYPT.

[18]  Yehuda Lindell,et al.  Highly-Efficient Universally-Composable Commitments based on the DDH Assumption , 2011, IACR Cryptol. ePrint Arch..

[19]  Ivan Damgård,et al.  Semi-Homomorphic Encryption and Multiparty Computation , 2011, IACR Cryptol. ePrint Arch..

[20]  Ran Canetti,et al.  Universally Composable Commitments , 2001, CRYPTO.

[21]  Amit Sahai,et al.  Efficient Non-interactive Proof Systems for Bilinear Groups , 2008, EUROCRYPT.

[22]  Vinod M. Prabhakaran,et al.  On the Communication Complexity of Secure Computation , 2013, IACR Cryptol. ePrint Arch..

[23]  Rudolf Ahlswede,et al.  Founding Cryptography on Oblivious Transfer , 2016 .

[24]  Claudio Orlandi,et al.  A New Approach to Practical Active-Secure Two-Party Computation , 2012, IACR Cryptol. ePrint Arch..

[25]  Kenneth G. Paterson Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings , 2011, EUROCRYPT.

[26]  Manoj Prabhakaran,et al.  Cryptographic Complexity Classes and Computational Intractability Assumptions , 2009, ICS.

[27]  Leonid A. Levin,et al.  A hard-core predicate for all one-way functions , 1989, STOC '89.

[28]  Carl Pomerance,et al.  Advances in Cryptology — CRYPTO ’87 , 2000, Lecture Notes in Computer Science.

[29]  Claudio Orlandi,et al.  MiniLEGO: Efficient Secure Two-Party Computation from General Assumptions , 2013, EUROCRYPT.

[30]  Ivan Damgård,et al.  On the Necessary and Sufficient Assumptions for UC Computation , 2010, TCC.

[31]  John P. Steinberger,et al.  The preimage security of double-block-length compression functions , 2011, IACR Cryptol. ePrint Arch..

[32]  Claude Cripeaut Equivalence Between Two Flavours of Oblivious Transfers , 1988 .

[33]  Ran Canetti,et al.  Universally composable security: a new paradigm for cryptographic protocols , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[34]  Matthew K. Franklin,et al.  Communication complexity of secure computation (extended abstract) , 1992, STOC '92.

[35]  Donald Beaver,et al.  Correlated pseudorandomness and the complexity of private computations , 1996, STOC '96.

[36]  Ran Canetti,et al.  Universally Composable Commitments (Extended Abstract) , 2001, CRYPTO 2001.

[37]  Yuval Ishai,et al.  Extending Oblivious Transfers Efficiently , 2003, CRYPTO.

[38]  Martijn Stam Beyond Uniformity: Better Security/Efficiency Tradeoffs for Compression Functions , 2008, CRYPTO.

[39]  Eiichiro Fujisaki,et al.  A Framework for Efficient Fully-Equipped UC Commitments , 2012, IACR Cryptol. ePrint Arch..

[40]  Marcin Wójcik,et al.  Does My Device Leak Information? An a priori Statistical Power Analysis of Leakage Detection Tests , 2013, ASIACRYPT.

[41]  Ignacio Cascudo,et al.  Additively Homomorphic UC Commitments with Optimal Amortized Overhead , 2015, Public Key Cryptography.

[42]  Serge Vaudenay,et al.  Advances in Cryptology - EUROCRYPT 2006 , 2006, Lecture Notes in Computer Science.

[43]  Ivan Damgård,et al.  Non-interactive and reusable non-malleable commitment schemes , 2003, STOC '03.

[44]  Yehuda Lindell,et al.  More Efficient Constant-Round Multi-Party Computation from BMR and SHE , 2016, IACR Cryptol. ePrint Arch..

[45]  Dan Boneh,et al.  Advances in Cryptology - CRYPTO 2003 , 2003, Lecture Notes in Computer Science.

[46]  Jörn Müller-Quade,et al.  On the (Im-)Possibility of Extending Coin Toss , 2006, EUROCRYPT.

[47]  Jonathan Katz,et al.  Efficient, Adaptively Secure, and Composable Oblivious Transfer with a Single, Global CRS , 2013, Public Key Cryptography.

[48]  Ryo Nishimaki,et al.  An Efficient Non-interactive Universally Composable String-Commitment Scheme , 2012, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[49]  Yehuda Lindell,et al.  On the Feasibility of Extending Oblivious Transfer , 2013, TCC.

[50]  Gilles Brassard,et al.  Information theoretic reductions among disclosure problems , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[51]  Yuval Ishai,et al.  Founding Cryptography on Oblivious Transfer - Efficiently , 2008, CRYPTO.