Weight selection for gap robustness with degree-constrained controllers

In modern robust control, control synthesis may be cast as an interpolation problem where the interpolant relates to robustness and performance criteria. In particular, robustness in the gap fits into this framework and the magnitude of the corresponding interpolant dictate the robustness to perturbations of the plant as a function of frequency. In this paper we consider the correspondence between weighted entropy functionals and minimizing interpolants in order to find appropriate interpolants for e.g. control synthesis. There are two basic issues that we address: we first characterize admissible shapes of minimizers by studying the corresponding inverse problem, and then we develop effective ways of shaping minimizers via suitable choices of weights. These results are used in order to systematize feedback control synthesis to obtain frequency dependent robustness bounds with a constraint on the controller degree.

[1]  Anders Lindquist,et al.  Cepstral coefficients, covariance lags, and pole-zero models for finite data strings , 2001, IEEE Trans. Signal Process..

[2]  T.T. Georgiou,et al.  Sensitivity shaping with degree constraint via convex optimization , 2006, 2006 American Control Conference.

[3]  T. Georgiou,et al.  Optimal robustness in the gap metric , 1990 .

[4]  C. Byrnes,et al.  A complete parameterization of all positive rational extensions of a covariance sequence , 1995, IEEE Trans. Autom. Control..

[5]  Tryphon T. Georgiou,et al.  Remarks on control design with degree constraint , 2006, IEEE Transactions on Automatic Control.

[6]  Tryphon T. Georgiou,et al.  Kullback-Leibler approximation of spectral density functions , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[7]  Tryphon T. Georgiou,et al.  Realization of power spectra from partial covariance sequences , 1987, IEEE Trans. Acoust. Speech Signal Process..

[8]  Tryphon T. Georgiou,et al.  A generalized entropy criterion for Nevanlinna-Pick interpolation with degree constraint , 2001, IEEE Trans. Autom. Control..

[9]  Johan Karlsson,et al.  Stability-Preserving Rational Approximation Subject to Interpolation Constraints , 2008, IEEE Transactions on Automatic Control.

[10]  R. Kálmán Realization of Covariance Sequences , 1982 .

[11]  Z. Nehari Bounded analytic functions , 1950 .

[12]  C. Byrnes,et al.  A Convex Optimization Approach to the Rational Covariance Extension Problem , 1999 .

[13]  Keith Glover,et al.  A loop-shaping design procedure using H/sub infinity / synthesis , 1992 .

[14]  J. Aplevich,et al.  Lecture Notes in Control and Information Sciences , 1979 .

[15]  K. Glover,et al.  Minimum entropy H ∞ control , 1990 .

[16]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[17]  Tryphon T. Georgiou,et al.  Kullback-Leibler approximation of spectral density functions , 2003, IEEE Trans. Inf. Theory.

[18]  Johan Karlsson,et al.  The Inverse Problem of Analytic Interpolation With Degree Constraint and Weight Selection for Control Synthesis , 2010, IEEE Transactions on Automatic Control.

[19]  Pierre Apkarian,et al.  Nonsmooth optimization for multiband frequency domain control design , 2007, Autom..

[20]  G. Vinnicombe Frequency domain uncertainty and the graph topology , 1993, IEEE Trans. Autom. Control..

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[23]  R. E. Kalman,et al.  When Is a Linear Control System Optimal , 1964 .

[24]  M. Vidyasagar Control System Synthesis : A Factorization Approach , 1988 .

[25]  John E. McCarthy,et al.  Pick Interpolation and Hilbert Function Spaces , 2002 .

[26]  T. Georgiou A topological approach to Nevanlinna-pick interpolation , 1987 .

[27]  Shinji Hara,et al.  Generalized KYP lemma: unified frequency domain inequalities with design applications , 2005, IEEE Transactions on Automatic Control.

[28]  T. Başar Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses , 2001 .

[29]  Ryozo Nagamune,et al.  SENSITIVITY SHAPING WITH DEGREE CONSTRAINT BY NONLINEAR LEAST-SQUARES OPTIMIZATION , 2005 .

[30]  A. Lindquist,et al.  The Inverse Problem of Analytic Interpolation with Degree Constraint , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[31]  Mathukumalli Vidyasagar,et al.  Robust controllers for uncertain linear multivariable systems , 1984, Autom..

[32]  C. Byrnes,et al.  Generalized interpolation in $H^\infty$ with a complexity constraint , 2004 .

[33]  Tryphon T. Georgiou,et al.  Flexible structure experiments at JPL and WPAFB: H8 controller designs , 1992 .

[34]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[35]  Anders Lindquist,et al.  From Finite Covariance Windows to Modeling Filters: A Convex Optimization Approach , 2001, SIAM Rev..

[36]  Ryozo Nagamune Closed-loop shaping based on Nevanlinna-Pick interpolation with a degree bound , 2004, IEEE Transactions on Automatic Control.