Pushing the frontiers of modeling excited electronic states and dynamics to accelerate materials engineering and design

Abstract Electronic excitations and their dynamics are oftentimes at the foundation of how we use and probe materials. While recent experimental advances allow us to do so with unprecedented accuracy and time resolution, their interpretation relies on solid theoretical understanding. This can be provided by cutting-edge, first-principles theoretical-spectroscopy based on many-body perturbation theory (MBPT) and time-dependent density functional theory (TDDFT). In this work we review some of our recent results as successful examples for how electronic-structure methods lead to interesting insight into electronic excitations and deep understanding of modern materials. In many cases these techniques are accurate and even predictive, yet they rely on approximations to be computationally feasible. We illustrate the need for further theoretical understanding, using dielectric screening as an example in MBPT and faster, more accurate numerical integrators as a challenge for real-time TDDFT. Finally, we describe how incorporating online databases into computational materials research on excited electronic states can side-step the problem of high computational cost to facilitate materials design.

[1]  E. Artacho,et al.  Core Electrons in the Electronic Stopping of Heavy Ions. , 2018, Physical review letters.

[2]  F. Claeyssens,et al.  Growth of ZnO thin films—experiment and theory , 2005 .

[3]  M. Gilbert,et al.  Voltage-induced switching of an antiferromagnetically ordered topological Dirac semimetal , 2017, 1711.09926.

[4]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[5]  F. Bechstedt,et al.  Linear optical properties in the projector-augmented wave methodology , 2006 .

[6]  P. Mahadevan,et al.  Indirect to direct bandgap transition under uniaxial strain in layered ZnO , 2013 .

[7]  Yi Cui,et al.  Stabilization of Ultrathin Zinc Oxide Films on Metals: Reconstruction versus Hydroxylation , 2015 .

[8]  Friedhelm Bechstedt,et al.  Ab initio description of quasiparticle band structures and optical near-edge absorption of transparent conducting oxides , 2012 .

[9]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[10]  F. Bechstedt,et al.  Valence-band splittings in cubic and hexagonal AlN, GaN, and InN , 2010 .

[11]  Clustering of N impurities in ZnO , 2012 .

[12]  A. Zangwill,et al.  Resonant two-electron excitation in copper , 1981 .

[13]  Andrew Zangwill,et al.  Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases , 1980 .

[14]  Chi-Wang Shu,et al.  High Order Strong Stability Preserving Time Discretizations , 2009, J. Sci. Comput..

[15]  F. Bechstedt,et al.  Band discontinuities at Si-TCO interfaces from quasiparticle calculations: Comparison of two alignment approaches , 2012 .

[16]  X. Ouyang,et al.  Ab initio electronic stopping power and threshold effect of channeled slow light ions in HfO 2 , 2017, 1706.09112.

[17]  F. Bechstedt,et al.  Structural, electrical, and optical properties of hydrogen-doped ZnO films , 2012 .

[18]  F. Bechstedt,et al.  Energetics and approximate quasiparticle electronic structure of low-index surfaces of SnO2 , 2012 .

[19]  Yosuke Kanai,et al.  Quantum Dynamics Simulation of Electrons in Materials on High-Performance Computers , 2014, Computing in Science & Engineering.

[20]  Angel Rubio,et al.  Propagators for the Time-Dependent Kohn-Sham Equations: Multistep, Runge-Kutta, Exponential Runge-Kutta, and Commutator Free Magnus Methods. , 2018, Journal of chemical theory and computation.

[21]  B. S. Hulbert,et al.  Structural, Electronic, and Optical Properties of K2Sn3O7 with an Offset Hollandite Structure. , 2017, Inorganic chemistry.

[22]  A. Zunger Inverse design in search of materials with target functionalities , 2018 .

[23]  Andre Schleife,et al.  Nonequilibrium BN-ZnO: Optical properties and excitonic effects from first principles , 2017, 1712.07200.

[24]  Emilio Artacho,et al.  Electronic stopping power in LiF from first principles. , 2007, Physical review letters.

[25]  Lucia Reining,et al.  An efficient method for calculating quasiparticle energies in semiconductors , 1992 .

[26]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[27]  Friedhelm Bechstedt,et al.  Real-structure effects: Absorption edge of MgxZn1-xO, CdxZn1-xO, and n-type ZnO from ab-initio calculations , 2012, OPTO.

[28]  Friedhelm Bechstedt,et al.  EfficientO(N2)method to solve the Bethe-Salpeter equation , 2003 .

[29]  S. Weiner,et al.  Decoupling Local Disorder and Optical Effects in Infrared Spectra: Differentiating Between Calcites with Different Origins , 2011, Advanced materials.

[30]  G. Kresse,et al.  Band alignment of semiconductors from density-functional theory and many-body perturbation theory , 2014 .

[31]  V. Peuckert A new approximation method for electron systems , 1978 .

[32]  Marco Buongiorno Nardelli,et al.  A RESTful API for exchanging materials data in the AFLOWLIB.org consortium , 2014, 1403.2642.

[33]  Stefano Curtarolo,et al.  High-throughput combinatorial database of electronic band structures for inorganic scintillator materials. , 2011, ACS combinatorial science.

[34]  F. Bechstedt,et al.  Enhanced Optical Absorption Due to Symmetry Breaking in TiO2(1–x)S2x Alloys , 2012 .

[35]  S. K. Vasheghani Farahani,et al.  Impact of degenerate n-doping on the optical absorption edge in transparent conducting cadmium oxide , 2013, Photonics West - Optoelectronic Materials and Devices.

[36]  F. Bechstedt,et al.  Band lineup between silicon and transparent conducting oxides , 2010 .

[37]  M. Marques,et al.  Strong renormalization of the electronic band gap due to lattice polarization in the GW formalism. , 2013, Physical review letters.

[38]  K. W. Kim,et al.  Electrical switching of antiferromagnets via strongly spin-orbit coupled materials , 2017 .

[39]  Neil L Allan,et al.  Graphitic nanofilms as precursors to wurtzite films: theory. , 2006, Physical review letters.

[40]  Chris G. Van de Walle,et al.  Universal alignment of hydrogen levels in semiconductors, insulators and solutions , 2003, Nature.

[41]  Friedhelm Bechstedt,et al.  Cubic inclusions in hexagonal AlN, GaN, and InN: Electronic states , 2011 .

[42]  Walter R. L. Lambrecht,et al.  Lattice polarization effects on the screened Coulomb interaction $W$ of the GW approximation , 2017, 1706.10252.

[43]  G. Kresse,et al.  Implementation and performance of the frequency-dependent GW method within the PAW framework , 2006 .

[44]  F. Bechstedt Beyond Static Screening , 2015 .

[45]  Stephen R. Lee,et al.  Stopping power measurements of 20–180 keV 1H and 4He in indium phosphide using thick target backscattering , 1987 .

[46]  B. Sadigh,et al.  Quasiparticle spectra, absorption spectra, and excitonic properties of NaI and SrI2 from many-body perturbation theory , 2013, 1311.3502.

[47]  A. Correa,et al.  Electronic band structure effects in the stopping of protons in copper , 2016, 1604.00132.

[48]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[49]  T. Jungwirth,et al.  Electric Control of Dirac Quasiparticles by Spin-Orbit Torque in an Antiferromagnet. , 2016, Physical review letters.

[50]  F. Bechstedt,et al.  Tin dioxide from first principles: Quasiparticle electronic states and optical properties , 2011 .

[51]  R. Girlanda,et al.  Optical properties of semiconductors within the independent-quasiparticle approximation. , 1993, Physical review. B, Condensed matter.

[52]  O. Heavens,et al.  Optical properties of thin films — Where to? , 1978 .

[53]  Yosuke Kanai,et al.  Plane-wave pseudopotential implementation of explicit integrators for time-dependent Kohn-Sham equations in large-scale simulations. , 2012, The Journal of chemical physics.

[54]  Frank Fuchs,et al.  Optical and energy-loss spectra of MgO, ZnO, and CdO from ab initio many-body calculations , 2009 .

[55]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[56]  H. Paul,et al.  Judging the reliability of stopping power tables and programs for protons and alpha particles using statistical methods , 2005 .

[57]  Cherie R. Kagan,et al.  Limits of Carrier Diffusion in n-Type and p-Type CH3NH3PbI3 Perovskite Single Crystals. , 2016, The journal of physical chemistry letters.

[58]  Cheng-Wei Lee,et al.  Electronic stopping and proton dynamics in InP, GaP, and In0.5Ga0.5P from first principles , 2018, The European Physical Journal B.

[59]  A. Borisov,et al.  Time-dependent density-functional calculation of the stopping power for protons and antiprotons in metals , 2007 .

[60]  F. Flicker,et al.  Signatures of exciton condensation in a transition metal dichalcogenide , 2016, Science.

[61]  P. B. Allen,et al.  Influence of Fröhlich polaron coupling on renormalized electron bands in polar semiconductors: Results for zinc-blende GaN , 2016, 1603.04269.

[62]  Friedhelm Bechstedt,et al.  First-principles optical spectra for F centers in MgO. , 2012, Physical review letters.

[63]  M. Képénekian,et al.  Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors. , 2016, ACS nano.

[64]  Feliciano Giustino,et al.  Electron-phonon interactions from first principles , 2016, 1603.06965.

[65]  Frank Fuchs,et al.  Branch-point energies and band discontinuities of III-nitrides and III-/II-oxides from quasiparticle band-structure calculations , 2009 .

[66]  A. Schleife,et al.  Photoemission spectra and effective masses of n‐ and p‐type oxide semiconductors from first principles: ZnO, CdO, SnO2, MnO, and NiO , 2014 .

[67]  E. I. Sirotinin,et al.  Stopping cross sections of 80- to 500-KeV protons in phosphorus compounds , 1984 .

[68]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[69]  R. H. Lyddane,et al.  On the Polar Vibrations of Alkali Halides , 1941 .

[70]  A. Schleife,et al.  Bethe–Salpeter calculation of optical-absorption spectra of In2O3 and Ga2O3 , 2015 .

[71]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[72]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .

[73]  M. Klintenberg,et al.  Data mining and accelerated electronic structure theory as a tool in the search for new functional materials , 2008, 0808.2125.

[74]  F. Bechstedt,et al.  Electronic and optical properties of MgxZn1−xO and CdxZn1−xO from ab initio calculations , 2011 .

[75]  Winfried Mönch Electronic Properties of Semiconductor Interfaces , 2004 .

[76]  F. Bechstedt,et al.  Ab initio description of heterostructural alloys: Thermodynamic and structural properties of Mg x Zn 1 − x O and Cd x Zn 1 − x O , 2010, 1003.3614.

[77]  Ab-initio studies of electronic and spectroscopic properties of MgO, ZnO and CdO , 2008 .

[78]  Frank Fuchs,et al.  Ab initiotheory of excitons and optical properties for spin-polarized systems: Application to antiferromagnetic MnO , 2008 .

[79]  D. Åberg,et al.  Auger Recombination in Sodium-Iodide scintillators From First Principles , 2015 .

[80]  Chao Yang,et al.  A Structure Preserving Lanczos Algorithm for Computing the Optical Absorption Spectrum , 2016, SIAM J. Matrix Anal. Appl..

[81]  Sergei Tretiak,et al.  High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells , 2016, Nature.

[82]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[83]  Lin-Wang Wang,et al.  Efficient real-time time-dependent density functional theory method and its application to a collision of an ion with a 2D material. , 2015, Physical review letters.

[84]  J. Feng,et al.  Stopping-cross-section additivity for 1-2-MeV 4He+ in solid oxides , 1974 .

[85]  R. Kienberger,et al.  What will it take to observe processes in 'real time'? , 2014, Nature Photonics.

[86]  David I. Ketcheson,et al.  Strong stability preserving runge-kutta and multistep time discretizations , 2011 .

[87]  Yosuke Kanai,et al.  Accurate atomistic first-principles calculations of electronic stopping , 2015 .

[88]  Dillon C. Yost,et al.  Examining real-time time-dependent density functional theory nonequilibrium simulations for the calculation of electronic stopping power , 2017, 1805.01377.

[89]  François Gygi,et al.  Architecture of Qbox: A scalable first-principles molecular dynamics code , 2008, IBM J. Res. Dev..

[90]  F. Bechstedt,et al.  Influence of exchange and correlation on structural and electronic properties of AlN, GaN, and InN polytypes , 2011 .

[91]  William Gropp,et al.  PETSc Users Manual Revision 3.4 , 2016 .

[92]  Cheng-Wei Lee,et al.  Novel diffusion mechanism in the presence of excited electrons? , 2018, Materials Today.

[93]  Alfredo Caro,et al.  Nonadiabatic forces in ion-solid interactions: the initial stages of radiation damage. , 2012, Physical review letters.

[94]  F. Bechstedt,et al.  Band‐structure and optical‐transition parameters of wurtzite MgO, ZnO, and CdO from quasiparticle calculations , 2009 .

[95]  C. Sanz-Navarro,et al.  Electronic energy loss of swift protons in the oxides Al2O3, SiO2 and ZrO2 , 2002 .

[96]  First-principles study of ground- and excited-state properties of MgO , ZnO , and CdO polymorphs , 2006, cond-mat/0604480.

[97]  Zbigniew Galazka,et al.  Optical properties of In2O3 from experiment and first-principles theory: influence of lattice screening , 2018 .

[98]  P. Troshin,et al.  The chemical origin of the p-type and n-type doping effects in the hybrid methylammonium-lead iodide (MAPbI3) perovskite solar cells. , 2015, Chemical communications.

[99]  Alfredo A. Correa,et al.  Calculating electronic stopping power in materials from first principles , 2018, Computational Materials Science.

[100]  E. Draeger,et al.  Electron Elevator: Excitations across the Band Gap via a Dynamical Gap State. , 2015, Physical review letters.

[101]  A. Janotti,et al.  Effects of La 5 d and 4 f states on the electronic and optical properties of LaAlO 3 , 2016 .

[102]  Anubhav Jain,et al.  Assessing High-Throughput Descriptors for Prediction of Transparent Conductors , 2018, Chemistry of Materials.

[103]  F. Bechstedt,et al.  Bulk excitonic effects in surface optical spectra. , 2001, Physical review letters.

[104]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[105]  Sung Jun Lim,et al.  Optical determination of crystal phase in semiconductor nanocrystals , 2017, Nature Communications.

[106]  Boris Kozinsky,et al.  AiiDA: Automated Interactive Infrastructure and Database for Computational Science , 2015, ArXiv.

[107]  R. A. Langley,et al.  Measurement of the stopping cross sections for protons and 4He ions in erbium and erbium oxide: A test of Bragg's rule , 1976 .

[108]  F. Bechstedt,et al.  Quasiparticle bands and optical spectra of highly ionic crystals: AlN and NaCl , 2005 .

[109]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[110]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[111]  Yongli Gao,et al.  Qualifying composition dependent p and n self-doping in CH3NH3PbI3 , 2014 .

[112]  James A. Snyder,et al.  LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO , 2000 .

[113]  Vogl,et al.  Generalized Kohn-Sham schemes and the band-gap problem. , 1996, Physical review. B, Condensed matter.

[114]  J. C. Schön,et al.  Prediction of structure candidates for zinc oxide as a function of pressure and investigation of their electronic properties , 2014 .

[115]  A. Krasheninnikov,et al.  Electronic stopping power from first-principles calculations with account for core electron excitations and projectile ionization , 2014 .

[116]  Xavier Andrade,et al.  Massively Parallel First-Principles Simulation of Electron Dynamics in Materials , 2016, 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[117]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[118]  F. Bechstedt,et al.  Strain influence on valence-band ordering and excitons in ZnO: An ab initio study , 2007 .

[119]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[120]  Xiao Zhang,et al.  Excitons in scintillator materials: Optical properties and electron-energy loss spectra of NaI, LaBr_3, BaI_2, and SrI_2 , 2016, Journal of Materials Research.

[121]  M. R. Wagner,et al.  Molecular Precursor Route to a Metastable Form of Zinc Oxide , 2010 .

[122]  F. Bechstedt,et al.  Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons? , 2011, Physical review letters.

[123]  A. Krasheninnikov,et al.  Role of electronic excitations in ion collisions with carbon nanostructures. , 2006, Physical review letters.

[124]  Walter Kohn,et al.  Nobel Lecture: Electronic structure of matter-wave functions and density functionals , 1999 .

[125]  F. Bechstedt,et al.  Ab initiocalculation of optical properties with excitonic effects in wurtzite InxGa1−xN and InxAl1−xN alloys , 2013 .

[126]  Ethan P. Shapera,et al.  Database‐Driven Materials Selection for Semiconductor Heterojunction Design , 2018, Advanced Theory and Simulations.

[127]  D. Mourad,et al.  Determination of valence-band offset at cubic CdSe/ZnTe type-II heterojunctions: A combined experimental and theoretical approach , 2012, 1208.2188.

[128]  P. Ajayan,et al.  Stable Light‐Emitting Diodes Using Phase‐Pure Ruddlesden–Popper Layered Perovskites , 2018, Advanced materials.

[129]  A. Zangwill,et al.  Resonant Photoemission in Barium and Cerium , 1980 .

[130]  V. Chevrier,et al.  Alloy negative electrodes for Li-ion batteries. , 2014, Chemical reviews.

[131]  F. Fuchs,et al.  Efficient O(N 2 ) approach to solve the Bethe-Salpeter equation for excitonic bound states , 2008, 0805.0659.

[132]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[133]  F. Bechstedt,et al.  Distribution of cations in wurtzitic InxGa1-xN and InxAl1-xN alloys: Consequences for energetics and quasiparticle electronic structures , 2011 .

[134]  Liping Yu,et al.  Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. , 2012, Physical review letters.