A Navigation and Decision Making Architecture for Unmanned Ground Vehicles: Implementation and Results with the Raptor UGV

Abstract : Researchers at Defence R&D Canada- Suffield, under the Autonomous Land Systems (ALS) and Cohort projects, have been working to extend/enhance the capabilities of Unmanned Ground Vehicles (UGVs) beyond tele-operation. The goal is to create robotic platforms that are effective with minimal human supervision in outdoor environments. This report is a summary of the progress made in high level vehicle control, specifically the implementation and testing of algorithms providing point-to-point navigation and decision making capabilities for UGVs. To reach goals by traversing unknown terrain requires a number of navigation functions, including path tracking, obstacle avoidance, path planning and decision making modules. This report presents details of the theoretical underpinnings, the software design architecture, and results of implementing autonomous navigation and decision making software on a robotic platform, given competing priorities and limited sensing technologies.

[1]  Anthony Stentz,et al.  Optimal and efficient path planning for partially-known environments , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[2]  Jack Collier,et al.  Towards Distributed Intelligence: A High Level Definition , 2004 .

[3]  Cang Ye,et al.  A method for mobile robot navigation on rough terrain , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[4]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[5]  William Whittaker,et al.  Technology and Field Demonstration of Robotic Search for Antarctic Meteorites , 2000, Int. J. Robotics Res..

[6]  Roberto Manduchi,et al.  Terrain perception for DEMO III , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[7]  Martial Hebert,et al.  A complete navigation system for goal acquisition in unknown environments , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[8]  Michael J. Swain,et al.  An Architecture for Vision and Action , 1995, IJCAI.

[9]  W. Shi,et al.  A partitioned control scheme for mobile robot path tracking , 1991, IEEE 1991 International Conference on Systems Engineering.

[10]  Ronald C. Arkin,et al.  Integrating behavioral, perceptual, and world knowledge in reactive navigation , 1990, Robotics Auton. Syst..

[11]  R. Simmons,et al.  Probabilistic Navigation in Partially Observable Environments , 1995 .

[12]  Y. Tipsuwan,et al.  Model predictive path tracking via middleware for networked mobile robot over IP network , 2004, Proceedings of the 2004 American Control Conference.

[13]  Julio Rosenblatt,et al.  DAMN: a distributed architecture for mobile navigation , 1997, J. Exp. Theor. Artif. Intell..

[14]  Steven A. Velinsky,et al.  On the Tracking Control of Differentially Steered Wheeled Mobile Robots , 1997 .

[15]  Robin R. Murphy,et al.  Artificial intelligence and mobile robots: case studies of successful robot systems , 1998 .

[16]  Anthony Stentz,et al.  The Focussed D* Algorithm for Real-Time Replanning , 1995, IJCAI.

[17]  Eric Krotkov,et al.  Natural terrain hazard detection with a laser rangefinder , 1997, Proceedings of International Conference on Robotics and Automation.

[18]  R. C. Coulter,et al.  Implementation of the Pure Pursuit Path Tracking Algorithm , 1992 .

[19]  Oliver Brock,et al.  High-speed navigation using the global dynamic window approach , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[20]  Alexander M. Meystel,et al.  Intelligent Systems: Architecture, Design, and Control , 2000 .

[21]  Ronald C. Arkin,et al.  Motor Schema — Based Mobile Robot Navigation , 1989, Int. J. Robotics Res..

[22]  James S. Albus,et al.  Engineering of Mind: An Introduction to the Science of Intelligent Systems , 2001 .

[23]  Hans Utz,et al.  Miro - middleware for mobile robot applications , 2002, IEEE Trans. Robotics Autom..

[24]  M. Hebert,et al.  Local Perception for Mobile Robot Navigation in Natural Terrain: Two Approaches , 1993 .

[25]  Nils J. Nilsson,et al.  Shakey the Robot , 1984 .

[26]  Jean-Paul Laumond,et al.  Robot Motion Planning and Control , 1998 .

[27]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[28]  Carl D. Crane,et al.  Autonomous ground vehicle path tracking , 2004, J. Field Robotics.

[29]  James S. Albus,et al.  Outline for a theory of intelligence , 1991, IEEE Trans. Syst. Man Cybern..

[30]  K. N. Murphy Navigation and Retro-Traverse on a Remotely Operated Vehicle , 1992, Singapore International Conference on Intelligent Control and Instrumentation [Proceedings 1992].

[31]  Takeo Kanade,et al.  High-Resolution Terrain Map from Multiple Sensor Data , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[33]  Jack Collier,et al.  Software Systems for Robotics An Applied Research Perspective , 2006 .

[34]  Iwan Ulrich,et al.  VFH+: reliable obstacle avoidance for fast mobile robots , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[35]  Reid G. Simmons,et al.  Recent progress in local and global traversability for planetary rovers , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[36]  Michael R. M. Jenkin,et al.  Computational principles of mobile robotics , 2000 .

[37]  J. Minguez,et al.  ROBOT NAVIGATION IN VERY COMPLEX, DENSE, AND CLUTTERED INDOOR/OUTDOOR ENVIRONMENTS , 2002 .

[38]  Rachid Alami,et al.  An Architecture for Autonomy , 1998, Int. J. Robotics Res..

[39]  Jack Collier,et al.  AISS Miro Manual: A Rough Guide , 2006 .

[40]  Alonzo Kelly,et al.  An Approach to Rough Terrain Autonomous Mobility , 1997 .

[41]  Moëz Cherif,et al.  Motion planning for an All-Terrain Autonomous Vehicle , 1999 .

[42]  Alonzo Kelly,et al.  An intelligent, predictive control approach to the high-speed cross-country autonomous navigation problem , 1996 .

[43]  David Furcy,et al.  Lifelong Planning A , 2004, Artif. Intell..

[44]  Simon Lacroix,et al.  Reactive navigation in outdoor environments using potential fields , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[45]  S. Fleury,et al.  Reactive Navigation in Outdoor Environments , 2003 .

[46]  Reid G. Simmons,et al.  The curvature-velocity method for local obstacle avoidance , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[47]  J. Giesbrecht Local Navigation for Unmanned Group Vehicles , 2005 .

[48]  Larry Matthies,et al.  Stereo vision and rover navigation software for planetary exploration , 2002, Proceedings, IEEE Aerospace Conference.

[49]  A. Meystel,et al.  Intelligent control in robotics , 1988 .

[50]  Martial Hebert,et al.  Intelligent Unmanned Ground Vehicles: Autonomous Navigation Research at Carnegie Mellon , 1997 .

[51]  David Mackay,et al.  Staged Experiments in Mobile Vehicle Autonomy II , 2006 .

[52]  Jaime G. Carbonell,et al.  Integrating derivational analogy into a general problem-solving architecture , 1988 .

[53]  K. Murphy ANALYSIS OF ROBOTIC VEHICLE STEERING AND CONTROLLER DELAY , 1994 .

[54]  Richard T. Vaughan,et al.  The Player/Stage Project: Tools for Multi-Robot and Distributed Sensor Systems , 2003 .

[55]  G. Swaminathan Robot Motion Planning , 2006 .

[56]  Zvi Shiller,et al.  Motion planning for Mars Rover , 1999, Proceedings of the First Workshop on Robot Motion and Control. RoMoCo'99 (Cat. No.99EX353).