The Logarithmic Alternation Hierarchy Collapses: A∑2L = A∏2L

Abstract We show that AΣ 2 L = AΣ k L , k ≥ 2, by proving that AΣ 2 L coincides with AΠ 2 L . Essentially this is done by reducing the AΣ 2 L -complete set (GAP¢CoGap) (ℶ) to the question whether of two vectors A and B of n components, A contains more “solvable” components, i.e., components which are contained in GAP, than B . Moreover, using a similar technique we show AΣ 2 L = L hd (NL) . Finally, we consider the relevance of our proof technique for polynomial time classes, e.g., the Boolean NP -Hierarchy.

[1]  Klaus W. Wagner,et al.  Collapsing Oracle Hierarchies, Census Functions and Logarithmically Many Queries , 1988, STACS.

[2]  Seinosuke Toda Sigma_2 SPACE(n) is Closed under Complement , 1987, J. Comput. Syst. Sci..

[3]  Hsu-Chun Yen,et al.  Logspace Hierarchies, Polynomial Time and the Complexity of Fairness Problems Concerning Omega-Machines , 1987, SIAM J. Comput..

[4]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[5]  Gerd Wechsung,et al.  On the Boolean closure of NP , 1985, FCT.

[6]  Janos Simon,et al.  Space-Bounded Hierarchies and Probabilistic Computations , 1984, J. Comput. Syst. Sci..

[7]  L. Goldschlager The monotone and planar circuit value problems are log space complete for P , 1977, SIGA.

[8]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[9]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[10]  Jim Kadin The polynomial time hierarchy collapses if the Boolean hierarchy collapses , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[11]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[12]  Birgit Jenner,et al.  Characterizing the Polynomial Hierarchy by Alternating Auxiliary Pushdown Automata , 1988, STACS.

[13]  Mihalis Yannakakis,et al.  The complexity of facets (and some facets of complexity) , 1982, STOC '82.

[14]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[15]  R.E. Ladner,et al.  A Comparison of Polynomial Time Reducibilities , 1975, Theor. Comput. Sci..

[16]  Klaus-Jörn Lange Two Characterizations of the Logarithmic Alternation Hierarchy , 1986, MFCS.

[17]  Jin-Yi Cai,et al.  The Boolean Hierarchy: Hardware over NP , 1986, SCT.

[18]  Mihalis Yannakakis,et al.  The complexity of facets (and some facets of complexity) , 1982, STOC '82.

[19]  Klaus W. Wagner More Complicated Questions About Maxima and Minima, and Some Closures of NP , 1987, Theor. Comput. Sci..

[20]  Klaus W. Wagner,et al.  The Difference and Truth-Table Hierarchies for NP , 1987, RAIRO Theor. Informatics Appl..

[21]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .