Lifelong nnU-Net: a framework for standardized medical continual learning

[1]  M. Ghassemi,et al.  The medical algorithmic audit. , 2022, The Lancet. Digital health.

[2]  Oleg S. Pianykh,et al.  Dynamic memory to alleviate catastrophic forgetting in continual learning with medical imaging , 2021, Nature Communications.

[3]  Kerstin N. Vokinger,et al.  Regulating AI in medicine in the United States and Europe , 2021, Nature Machine Intelligence.

[4]  Anirban Mukhopadhyay,et al.  Adversarial Continual Learning for Multi-Domain Hippocampal Segmentation , 2021, DART/FAIR@MICCAI.

[5]  Anirban Mukhopadhyay,et al.  Detecting when pre-trained nnU-Net models fail silently for Covid-19 lung lesion segmentation , 2021, MICCAI.

[6]  Sergio Escalera,et al.  Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge , 2021, IEEE Transactions on Medical Imaging.

[7]  A. Kesselheim,et al.  Continual learning in medical devices: FDA's action plan and beyond. , 2021, The Lancet. Digital health.

[8]  Tinne Tuytelaars,et al.  Rehearsal revealed: The limits and merits of revisiting samples in continual learning , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[9]  Simone Calderara,et al.  Avalanche: an End-to-End Library for Continual Learning , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[10]  Jens Petersen,et al.  nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation , 2020, Nature Methods.

[11]  A. Mukhopadhyay,et al.  What is Wrong with Continual Learning in Medical Image Segmentation? , 2020, ArXiv.

[12]  Visvanathan Ramesh,et al.  A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten Lessons and the Bridge to Active and Open World Learning , 2020, Neural Networks.

[13]  Philip H. S. Torr,et al.  GDumb: A Simple Approach that Questions Our Progress in Continual Learning , 2020, ECCV.

[14]  Spyridon Bakas,et al.  Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data , 2020, Scientific Reports.

[15]  Aaron Y. Lee,et al.  Clinical applications of continual learning machine learning. , 2020, The Lancet. Digital health.

[16]  Micah J. Sheller,et al.  The future of digital health with federated learning , 2020, npj Digital Medicine.

[17]  Lequan Yu,et al.  MS-Net: Multi-Site Network for Improving Prostate Segmentation With Heterogeneous MRI Data , 2020, IEEE Transactions on Medical Imaging.

[18]  B. Caputo,et al.  Modeling the Background for Incremental Learning in Semantic Segmentation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Tae Joon Jun,et al.  Dissecting Catastrophic Forgetting in Continual Learning by Deep Visualization , 2020, ArXiv.

[20]  Keiji Yanai,et al.  Continual Learning of Image Translation Networks Using Task-Dependent Weight Selection Masks , 2019, ACPR.

[21]  Yuanyuan Wang,et al.  The Domain Shift Problem of Medical Image Segmentation and Vendor-Adaptation by Unet-GAN , 2019, MICCAI.

[22]  Pietro Zanuttigh,et al.  Incremental Learning Techniques for Semantic Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[23]  Ronald M. Summers,et al.  A large annotated medical image dataset for the development and evaluation of segmentation algorithms , 2019, ArXiv.

[24]  Konstantinos Kamnitsas,et al.  Towards continual learning in medical imaging , 2018, ArXiv.

[25]  David Filliat,et al.  Don't forget, there is more than forgetting: new metrics for Continual Learning , 2018, ArXiv.

[26]  Yen-Cheng Liu,et al.  Re-evaluating Continual Learning Scenarios: A Categorization and Case for Strong Baselines , 2018, ArXiv.

[27]  Philip H. S. Torr,et al.  Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence , 2018, ECCV.

[28]  Andrei A. Rusu,et al.  Overcoming catastrophic forgetting in neural networks , 2016, Proceedings of the National Academy of Sciences.

[29]  Tinne Tuytelaars,et al.  Expert Gate: Lifelong Learning with a Network of Experts , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Guido Gerig,et al.  ITK-SNAP: An interactive tool for semi-automatic segmentation of multi-modality biomedical images , 2016, 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[31]  Derek Hoiem,et al.  Learning without Forgetting , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Andrea Bernasconi,et al.  Multi-contrast submillimetric 3 Tesla hippocampal subfield segmentation protocol and dataset , 2015, Scientific Data.

[33]  Guillaume Lemaitre,et al.  Computer-Aided Detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review , 2015, Comput. Biol. Medicine.

[34]  D. Louis Collins,et al.  Training labels for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal protocol , 2015, Alzheimer's & Dementia.

[35]  Florian Jung,et al.  Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge , 2014, Medical Image Anal..

[36]  Chris W. Johnson,et al.  Identifying common problems in the acquisition and deployment of large-scale, safety―critical, software projects in the US and UK healthcare systems , 2011 .

[37]  Dwarikanath Mahapatra,et al.  Continual Domain Incremental Learning for Chest X-Ray Classification in Low-Resource Clinical Settings , 2021, DART/FAIR@MICCAI.

[38]  Robert C. Wolpert,et al.  A Review of the , 1985 .