Top-Down Reorganization of Activity in the Visual Pathway after Learning a Shape Identification Task

[1]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[2]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[3]  L. Maffei,et al.  The unresponsive regions of visual cortical receptive fields , 1976, Vision Research.

[4]  R. Shiffrin,et al.  Controlled and automatic human information processing: I , 1977 .

[5]  Walter Schneider,et al.  Controlled and Automatic Human Information Processing: 1. Detection, Search, and Attention. , 1977 .

[6]  Walter Schneider,et al.  Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. , 1977 .

[7]  S. McKee,et al.  Improvement in vernier acuity with practice , 1978, Perception & psychophysics.

[8]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[9]  R. Sekuler,et al.  A specific and enduring improvement in visual motion discrimination. , 1982, Science.

[10]  A Fiorentini,et al.  Interhemispheric transfer of visual information in humans: spatial characteristics. , 1987, The Journal of physiology.

[11]  Peter Földiák,et al.  Adaptation and decorrelation in the cortex , 1989 .

[12]  Richard Durbin,et al.  The computing neuron , 1989 .

[13]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[14]  S. Ogawa Brain magnetic resonance imaging with contrast-dependent oxygenation , 1990 .

[15]  D Sagi,et al.  Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Minami Ito,et al.  Columns for visual features of objects in monkey inferotemporal cortex , 1992, Nature.

[17]  F M Miezin,et al.  Activation of the hippocampus in normal humans: a functional anatomical study of memory. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[18]  S. Edelman,et al.  Long-term learning in vernier acuity: Effects of stimulus orientation, range and of feedback , 1993, Vision Research.

[19]  John Duncan,et al.  A neural basis for visual search in inferior temporal cortex , 1993, Nature.

[20]  G. Bydder,et al.  Magnetic Resonance Scanning and Epilepsy , 1994, NATO ASI Series.

[21]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[22]  Alan C. Evans,et al.  An MRI-Based Probabilistic Atlas of Neuroanatomy , 1994 .

[23]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.

[24]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[25]  Victor A. F. Lamme The neurophysiology of figure-ground segregation in primary visual cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  S. Ullman High-Level Vision: Object Recognition and Visual Cognition , 1996 .

[27]  Keiji Tanaka,et al.  Representation of Visual Features of Objects in the Inferotemporal Cortex , 1996, Neural Networks.

[28]  Karl J. Friston Testing for anatomically specified regional effects , 1997, Human brain mapping.

[29]  J. Duncan,et al.  Competitive brain activity in visual attention , 1997, Current Opinion in Neurobiology.

[30]  Ken Nakayama,et al.  Attentional requirements in a ‘preattentive’ feature search task , 1997, Nature.

[31]  Karl J. Friston,et al.  Human Brain Function , 1997 .

[32]  S. Hochstein,et al.  Task difficulty and the specificity of perceptual learning , 1997, Nature.

[33]  David L. Sheinberg,et al.  The role of temporal cortical areas in perceptual organization. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[34]  M. Corbetta,et al.  Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex , 1997, Journal of Cognitive Neuroscience.

[35]  A. Dale,et al.  The Retinotopy of Visual Spatial Attention , 1998, Neuron.

[36]  Keiji Tanaka,et al.  Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. , 1998, Journal of neurophysiology.

[37]  Pieter R. Roelfsema,et al.  Object-based attention in the primary visual cortex of the macaque monkey , 1998, Nature.

[38]  A Treisman,et al.  Feature binding, attention and object perception. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[39]  M. Corbetta,et al.  Human cortical mechanisms of visual attention during orienting and search. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[40]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[41]  A. McIntosh,et al.  Large-scale functional connectivity in associative learning: interrelations of the rat auditory, visual, and limbic systems. , 1998, Journal of neurophysiology.

[42]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[43]  K J Friston,et al.  The predictive value of changes in effective connectivity for human learning. , 1999, Science.

[44]  G. Orban,et al.  Neuronal Mechanisms of Perceptual Learning: Changes in Human Brain Activity with Training in Orientation Discrimination , 1999, NeuroImage.

[45]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[46]  K. Grill-Spector,et al.  The dynamics of object-selective activation correlate with recognition performance in humans , 2000, Nature Neuroscience.

[47]  Anthony Randal McIntosh,et al.  Towards a network theory of cognition , 2000, Neural Networks.

[48]  J. Duncan,et al.  Common regions of the human frontal lobe recruited by diverse cognitive demands , 2000, Trends in Neurosciences.

[49]  N. Kanwisher,et al.  Cortical Regions Involved in Perceiving Object Shape , 2000, The Journal of Neuroscience.

[50]  D. Heeger,et al.  Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry , 2000, Nature Neuroscience.

[51]  G. Mangun,et al.  The neural mechanisms of top-down attentional control , 2000, Nature Neuroscience.

[52]  C. Gilbert,et al.  Learning to find a shape , 2000, Nature Neuroscience.

[53]  G. Orban,et al.  Practising orientation identification improves orientation coding in V1 neurons , 2001, Nature.

[54]  P Girard,et al.  Feedback connections act on the early part of the responses in monkey visual cortex. , 2001, Journal of neurophysiology.

[55]  T. Hendler,et al.  A hierarchical axis of object processing stages in the human visual cortex. , 2001, Cerebral cortex.

[56]  Z Kourtzi,et al.  Representation of Perceived Object Shape by the Human Lateral Occipital Complex , 2001, Science.

[57]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[58]  C. Gilbert,et al.  Learning to see: experience and attention in primary visual cortex , 2001, Nature Neuroscience.

[59]  C. Gilbert,et al.  The Neural Basis of Perceptual Learning , 2001, Neuron.

[60]  M. Raichle,et al.  Searching for a baseline: Functional imaging and the resting human brain , 2001, Nature Reviews Neuroscience.

[61]  N. Kanwisher,et al.  The lateral occipital complex and its role in object recognition , 2001, Vision Research.

[62]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[63]  P. Maquet,et al.  Neural correlates of perceptual learning: A functional MRI study of visual texture discrimination , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[64]  D. Mumford,et al.  Neural activity in early visual cortex reflects behavioral experience and higher-order perceptual saliency , 2002, Nature Neuroscience.

[65]  D. Heeger,et al.  In this issue , 2002, Nature Reviews Drug Discovery.

[66]  K. Grill-Spector The neural basis of object perception , 2003, Current Opinion in Neurobiology.

[67]  C. Furmanski,et al.  Learning Strengthens the Response of Primary Visual Cortex to Simple Patterns , 2004, Current Biology.

[68]  Hans-Jochen Heinze,et al.  Popout modulates focal attention in the primary visual cortex , 2004, NeuroImage.

[69]  C. Gilbert,et al.  Perceptual learning and top-down influences in primary visual cortex , 2004, Nature Neuroscience.

[70]  G. Orban,et al.  Practising orientation identi ® cation improves orientation coding in V 1 neurons , 2022 .