Processing of complex stimuli and natural scenes in the visual cortex

[1]  David J Tolhurst,et al.  Independent components of color natural scenes resemble V1 neurons in their spatial and color tuning. , 2004, Journal of neurophysiology.

[2]  N. Logothetis,et al.  The Effect of Learning on the Function of Monkey Extrastriate Visual Cortex , 2004, PLoS biology.

[3]  Konrad Paul Kording,et al.  Bayesian integration in sensorimotor learning , 2004, Nature.

[4]  Dale Purves,et al.  Natural scene statistics as the universal basis of color context effects , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Rodrigo F. Salazar,et al.  Responses to natural scenes in cat V1. , 2003, Journal of neurophysiology.

[6]  Konrad P. Körding,et al.  Learning the Nonlinearity of Neurons from Natural Visual Stimuli , 2003, Neural Computation.

[7]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  Ben Willmore,et al.  The Receptive-Field Organization of Simple Cells in Primary Visual Cortex of Ferrets under Natural Scene Stimulation , 2003, The Journal of Neuroscience.

[9]  Eero P. Simoncelli Vision and the statistics of the visual environment , 2003, Current Opinion in Neurobiology.

[10]  József Fiser,et al.  Coding of Natural Scenes in Primary Visual Cortex , 2003, Neuron.

[11]  Jochen Braun,et al.  Natural scenes upset the visual applecart , 2003, Trends in Cognitive Sciences.

[12]  Darragh Smyth,et al.  Methods for first-order kernel estimation: simple-cell receptive fields from responses to natural scenes , 2003, Network.

[13]  M. Lewicki,et al.  Learning higher-order structures in natural images , 2003, Network.

[14]  Bruce C. Hansen,et al.  Perceptual anisotropies in visual processing and their relation to natural image statistics , 2003, Network.

[15]  William Bialek,et al.  Analyzing Neural Responses to Natural Signals: Maximally Informative Dimensions , 2002, Neural Computation.

[16]  J. Touryan,et al.  Isolation of Relevant Visual Features from Random Stimuli for Cortical Complex Cells , 2002, The Journal of Neuroscience.

[17]  Garrett B. Stanley,et al.  Adaptive Spatiotemporal Receptive Field Estimation in the Visual Pathway , 2002, Neural Computation.

[18]  H. Jones,et al.  Spatial organization and magnitude of orientation contrast interactions in primate V1. , 2002, Journal of neurophysiology.

[19]  Dale Purves,et al.  Range image statistics can explain the anomalous perception of length , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Guillaume A. Rousselet,et al.  Parallel processing in high-level categorization of natural images , 2002, Nature Neuroscience.

[21]  P. Perona,et al.  Rapid natural scene categorization in the near absence of attention , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Brian Lau,et al.  Computational subunits of visual cortical neurons revealed by artificial neural networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Edward H. Adelson,et al.  Motion illusions as optimal percepts , 2002, Nature Neuroscience.

[24]  J. Gallant,et al.  Natural Stimulation of the Nonclassical Receptive Field Increases Information Transmission Efficiency in V1 , 2002, The Journal of Neuroscience.

[25]  Terrence J. Sejnowski,et al.  Slow Feature Analysis: Unsupervised Learning of Invariances , 2002, Neural Computation.

[26]  Yang Dan,et al.  Analysis of sensory coding with complex stimuli , 2001, Current Opinion in Neurobiology.

[27]  R VanRullen,et al.  Is it a Bird? Is it a Plane? Ultra-Rapid Visual Categorisation of Natural and Artifactual Objects , 2001, Perception.

[28]  D. Fitzpatrick Seeing beyond the receptive field in primary visual cortex , 2000, Current Opinion in Neurobiology.

[29]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[30]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[31]  D. Perrett,et al.  The `Ideal Homunculus': decoding neural population signals , 1998, Trends in Neurosciences.

[32]  G. DeAngelis,et al.  Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. , 1997, Journal of neurophysiology.

[33]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[34]  I. Ohzawa,et al.  Receptive-field dynamics in the central visual pathways , 1995, Trends in Neurosciences.

[35]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[36]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[37]  G L Gerstein,et al.  Spatiotemporal organization of cat lateral geniculate receptive fields. , 1976, Journal of neurophysiology.

[38]  P Kuyper,et al.  Triggered correlation. , 1968, IEEE transactions on bio-medical engineering.

[39]  W. Pitts,et al.  What the Frog's Eye Tells the Frog's Brain , 1959, Proceedings of the IRE.

[40]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[41]  Konrad Paul Kording,et al.  How are complex cell properties adapted to the statistics of natural stimuli? , 2004, Journal of neurophysiology.

[42]  Eero P. Simoncelli,et al.  On Advances in Statistical Modeling of Natural Images , 2004, Journal of Mathematical Imaging and Vision.

[43]  Robert Shapley,et al.  Receptive field structure of neurons in monkey primary visual cortex revealed by stimulation with natural image sequences. , 2002, Journal of vision.

[44]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[45]  J. Gallant,et al.  Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. , 2001, Network.

[46]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.