A Generative Model for Separating Illumination and Reflectance from Images

It is well known that even slight changes in nonuniform illumination lead to a large image variability and are crucial for many visual tasks. This paper presents a new ICA related probabilistic model where the number of sources exceeds the number of sensors to perform an image segmentation and illumination removal, simultaneously. We model illumination and reflectance in log space by a generalized autoregressive process and Hidden Gaussian Markov random field, respectively.The model ability to deal with segmentation of illuminated images is compared with a Canny edge detector and homomorphic filtering. We apply the model to two problems: synthetic image segmentation and sea surface pollution detection from intensity images.

[1]  Ronald R. Coifman,et al.  Entropy-based algorithms for best basis selection , 1992, IEEE Trans. Inf. Theory.

[2]  Josiane Zerubia,et al.  Fully Bayesian image segmentation-an engineering perspective , 1997, Proceedings of International Conference on Image Processing.

[3]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[4]  P. Schröder Wavelet algorithms for illumination computations , 1994 .

[5]  Richard M. Everson,et al.  Particle Filters for Non-Stationary ICA , 2000 .

[6]  Gilles Celeux,et al.  EM procedures using mean field-like approximations for Markov model-based image segmentation , 2003, Pattern Recognit..

[7]  Naoki Saito,et al.  Image approximation and modeling via least statistically dependent bases , 2001, Pattern Recognit..

[8]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .

[9]  David Lowe,et al.  Towards sea surface pollution detection from visible band images , 2001 .

[10]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[11]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[12]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[13]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[14]  Barak A. Pearlmutter,et al.  Maximum Likelihood Blind Source Separation: A Context-Sensitive Generalization of ICA , 1996, NIPS.

[15]  Stephen M. Smith,et al.  Hidden Markov random field model and segmentation of brain MR images , 2001 .

[16]  R. Casey,et al.  Advances in Pattern Recognition , 1971 .

[17]  Edward H. Adelson,et al.  The perception of shading and reflectance , 1996 .

[18]  David J. Kriegman,et al.  What Is the Set of Images of an Object Under All Possible Illumination Conditions? , 1998, International Journal of Computer Vision.

[19]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[20]  Stephen J. Roberts,et al.  Data decomposition using independent component analysis with prior constraints , 2003, Pattern Recognit..

[21]  S. Srihari Mixture Density Networks , 1994 .

[22]  Katsushi Ikeuchi,et al.  Appearance-based visual learning and object recognition with illumination invariance , 2000, Machine Vision and Applications.

[23]  David S. Broomhead,et al.  Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..

[24]  László Szirmay-Kalos,et al.  MONTE-CARLO METHODS IN GLOBAL ILLUMINATION , 2000 .

[25]  M. Gibbs,et al.  Efficient implementation of gaussian processes , 1997 .

[26]  Ian T. Nabney,et al.  Regularisation of mixture density networks , 1999 .

[27]  Christopher M. Bishop,et al.  Curvature-driven smoothing: a learning algorithm for feedforward networks , 1993, IEEE Trans. Neural Networks.

[28]  Richard M. Everson,et al.  Hidden Markov Independent Component Analysis , 2000 .

[29]  Anil K. Jain,et al.  Markov random fields : theory and application , 1993 .

[30]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Ze-Nian Li,et al.  Locale-based visual object retrieval under illumination change , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[32]  H Farid,et al.  Separating reflections from images by use of independent component analysis. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[33]  H. Barrow,et al.  RECOVERING INTRINSIC SCENE CHARACTERISTICS FROM IMAGES , 1978 .

[34]  Yair Weiss,et al.  Deriving intrinsic images from image sequences , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[35]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[36]  Dipti Prasad Mukherjee,et al.  Advances in Pattern Recognition , 2005, Pattern Recognit. Lett..

[37]  E. Adelson,et al.  Separating Reflections from Images Using Independent Components Analysis , 1998 .

[38]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[39]  William D. Penny,et al.  Variational Bayes for generalized autoregressive models , 2002, IEEE Trans. Signal Process..

[40]  Hagai Attias,et al.  Independent Factor Analysis , 1999, Neural Computation.

[41]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[42]  Jitendra Malik,et al.  Blobworld: A System for Region-Based Image Indexing and Retrieval , 1999, VISUAL.