Origami-inspired active structures: a synthesis and review

Origami, the ancient art of paper folding, has inspired the design of engineering devices and structures for decades. The underlying principles of origami are very general, which has led to applications ranging from cardboard containers to deployable space structures. More recently, researchers have become interested in the use of active materials (i.e., those that convert various forms of energy into mechanical work) to effect the desired folding behavior. When used in a suitable geometry, active materials allow engineers to create self-folding structures. Such structures are capable of performing folding and/or unfolding operations without being kinematically manipulated by external forces or moments. This is advantageous for many applications including space systems, underwater robotics, small scale devices, and self-assembling systems. This article is a survey and analysis of prior work on active self-folding structures as well as methods and tools available for the design of folding structures in general and self-folding structures in particular. The goal is to provide researchers and practitioners with a systematic view of the state-of-the-art in this important and evolving area. Unifying structural principles for active self-folding structures are identified and used as a basis for a quantitative and qualitative comparison of numerous classes of active materials. Design considerations specific to folded structures are examined, including the issues of crease pattern identification and fold kinematics. Although few tools have been created with active materials in mind, many of them are useful in the overall design process for active self-folding structures. Finally, the article concludes with a discussion of open questions for the field of origami-inspired engineering.

[1]  Anton Nijholt,et al.  Smart material interfaces as a methodology for interaction: a survey of SMIs' state of the art and development , 2013, SMI '13.

[2]  Sergio Pellegrino,et al.  Inextensional wrapping of flat membranes , 1992 .

[3]  Ashley P. Thrall,et al.  Accordion shelters: A historical review of origami-like deployable shelters developed by the US military , 2014 .

[4]  Dimitris C. Lagoudas,et al.  Modeling of Shape Memory Alloy Wire Meshes Using Effective Lamina Properties for Improved Analysis Efficiency , 2013 .

[5]  Larry L. Howell,et al.  A position analysis of coupled spherical mechanisms found in action origami , 2014 .

[6]  Simon D. Guest,et al.  Origami folding: A Structural Engineering Approach , 2011 .

[7]  Alfred J. Crosby,et al.  Adaptive polymer particles , 2008 .

[8]  Horn-Sen Tzou,et al.  Nonlinear piezothermoelasticity and multi-field actuations, part 1: Nonlinear anisotropic piezothermoelastic shell laminates , 1997 .

[9]  R. Lang,et al.  The science of origami , 2007 .

[10]  Kyung Cheol Choi,et al.  Self-assembled microarray of organic light-emitting diodes using a self-assembled monolayer by microcontact printing , 2009 .

[11]  Y. Tai,et al.  A MEMS intraocular origami coil , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[12]  G. K. Ananthasuresh,et al.  Designing compliant mechanisms , 1995 .

[13]  R. J. Wood,et al.  An Origami-Inspired Approach to Worm Robots , 2013, IEEE/ASME Transactions on Mechatronics.

[14]  Hongyan He,et al.  An oral delivery device based on self-folding hydrogels. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[15]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[16]  Yi Sun,et al.  Sensor and actuator integrated low-profile robotic origami , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  T. Ghosh,et al.  Dielectric elastomers as next-generation polymeric actuators. , 2007, Soft matter.

[18]  Darren J. Hartl,et al.  Computational Design of a Reconfigurable Origami Space Structure Incorporating Shape Memory Alloy Thin Films , 2012 .

[19]  R. Lang Origami Design Secrets: Mathematical Methods for an Ancient Art , 2003 .

[20]  J. A. Logan,et al.  Electrochemistry of conducting polypyrrole films , 1981 .

[21]  Joseph S. B. Mitchell,et al.  Folding flat silhouettes and wrapping polyhedral packages: New results in computational origami , 2000, Comput. Geom..

[22]  Valeriy Luchnikov,et al.  Self-rolled polymer tubes: novel tools for microfluidics, microbiology, and drug-delivery systems. , 2011, Macromolecular rapid communications.

[23]  L. Mahadevan,et al.  How the Venus flytrap snaps , 2005, Nature.

[24]  M. Frecker,et al.  Investigating the performance and properties of dielectric elastomer actuators as a potential means to actuate origami structures , 2014 .

[25]  Wei Li,et al.  A Novel Method to Design and Optimize Flat-Foldable Origami Structures Through a Genetic Algorithm , 2014, J. Comput. Inf. Sci. Eng..

[26]  Ergun Akleman,et al.  Towards building smart self-folding structures , 2013, Comput. Graph..

[27]  R. Wood,et al.  Robotic origamis : self-morphing modular robots , 2011 .

[28]  Alastair Johnson,et al.  Sandwich structures with textile-reinforced composite foldcores under impact loads , 2010 .

[29]  Larry L. Howell,et al.  An Approach for Understanding Action Origami as Kinematic Mechanisms , 2013 .

[30]  Ashley P. Thrall,et al.  Honeycomb core sandwich panels for origami-inspired deployable shelters: Multi-objective optimization for minimum weight and maximum energy efficiency , 2014 .

[31]  Dimitris C. Lagoudas,et al.  Aerospace applications of shape memory alloys , 2007 .

[32]  Daniel M. Aukes,et al.  Self-folding origami: shape memory composites activated by uniform heating , 2014 .

[33]  Jian S. Dai,et al.  Four Motion Branches of an Origami Based Eight Bar Spatial Mechanism , 2013 .

[34]  R. Wood,et al.  Self-folding miniature elastic electric devices , 2014 .

[35]  Jiayao Ma,et al.  A Novel Origami Crash Box With Varying Profiles , 2013 .

[36]  Erik D. Demaine,et al.  Recent Results in Computational Origami , 2002 .

[37]  Grant P. Steven,et al.  A Review on the Modelling of Piezoelectric Sensors and Actuators Incorporated in Intelligent Structures , 1998 .

[38]  L. Ionov,et al.  Self-folding all-polymer thermoresponsive microcapsules , 2011 .

[39]  Roel Vertegaal,et al.  MorePhone: a study of actuated shape deformations for flexible thin-film smartphone notifications , 2013, CHI.

[40]  Robert J. Wood,et al.  Robotic Origamis: Self-morphing Modular Robot , 2012 .

[41]  Masahiko Inami,et al.  Animated paper: A toolkit for building moving toys , 2010, CIE.

[42]  L. Ionov,et al.  Temperature controlled encapsulation and release using partially biodegradable thermo-magneto-sensitive self-rolling tubes , 2010 .

[43]  Valeriy Luchnikov,et al.  Formation of self-rolled polymer microtubes studied by combinatorial approach , 2008 .

[44]  Mark Yim,et al.  Dielectric elastomer bender actuator applied to modular robotics , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[45]  Wei Gao,et al.  Kinetogami: A Reconfigurable, Combinatorial, and Printable Sheet Folding , 2013 .

[46]  K. Kuribayashi,et al.  A novel foldable stent graft , 2004 .

[47]  Stefan Seelecke,et al.  BATMAV: a 2-DOF bio-inspired flapping flight platform , 2010, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[48]  Nicolae Lobontiu,et al.  Compliant Mechanisms: Design of Flexure Hinges , 2002 .

[49]  Martin L. Dunn,et al.  Active origami by 4D printing , 2014 .

[50]  Alberto Domingo Cabo,et al.  Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures , 2009 .

[51]  Leonid Ionov,et al.  Shape-programmed folding of stimuli-responsive polymer bilayers. , 2012, ACS nano.

[52]  Jie Qi,et al.  Animating paper using shape memory alloys , 2012, CHI.

[53]  Hao Yan,et al.  Dna Origami: a History and Current Perspective This Review Comes from a Themed Issue on Nanotechnology and Miniaturization Edited Structural Development Assembly Approaches Single-molecule Detection Material Organization , 2022 .

[54]  Richard L. Baron,et al.  Twenty-meter space telescope based on diffractive Fresnel lens , 2004, SPIE Optics + Photonics.

[55]  Jin-seong Park,et al.  Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors , 2009 .

[56]  R. Xiao,et al.  Functional stimuli responsive hydrogel devices by self-folding , 2014 .

[57]  Alastair Johnson,et al.  Mechanical tests for foldcore base material properties , 2009 .

[58]  Jian S. Dai,et al.  Kinematic Analysis and Stiffness Validation of Origami Cartons , 2013 .

[59]  C. R. Calladine,et al.  Theory of Shell Structures , 1983 .

[60]  David H. Gracias,et al.  Laser triggered sequential folding of microstructures , 2012 .

[61]  H. Morawiec Medical applications of shape memory alloys , 2000 .

[62]  R. Calado,et al.  Age-related changes of the multidrug resistance P-glycoprotein function in normal human peripheral blood T lymphocytes. , 2003, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[63]  Toyohide Watanabe,et al.  Construction of 3-D Paper-made Objects from Crease Patterns , 2005, MVA.

[64]  Hyoyoung Lee,et al.  Facile preparation of an n-type reduced graphene oxide field effect transistor at room temperature. , 2014, Chemical communications.

[65]  S. Timoshenko,et al.  Analysis of Bi-Metal Thermostats , 1925 .

[66]  Spencer P. Magleby,et al.  Accommodating Thickness in Origami-Based Deployable Arrays , 2013 .

[67]  Robert J. Lang Computational origami: from flapping birds to space telescopes , 2009, SCG '09.

[68]  M. Jamal,et al.  Enzymatically triggered actuation of miniaturized tools. , 2010, Journal of the American Chemical Society.

[69]  C. M. Wayman,et al.  Phase Transformations: Nondiffusive , 2014 .

[70]  Gaston Fischer,et al.  On Phase Transformations , 1957 .

[71]  F. Schneider,et al.  Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS , 2009 .

[72]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[73]  D. Lagoudas Shape memory alloys : modeling and engineering applications , 2008 .

[74]  Koji Ikuta,et al.  Micro/miniature shape memory alloy actuator , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[75]  Ichiro Hagiwara,et al.  Application of Conformal Maps to Origami-Based Structures: New Method to Design Deployable Circular Membranes , 2013 .

[76]  D. Sujan,et al.  Origami Theory and Its Applications: A Literature Review , 2013 .

[77]  Darren J. Hartl,et al.  Control of a Shape Memory Alloy Based Self-Folding Sheet , 2014 .

[78]  Rina Tannenbaum,et al.  Capture/release ability of thermo-responsive polymer particles , 2010 .

[79]  Marc Grzeschik,et al.  Performance of Foldcores Mechanical Properties and Testing , 2013 .

[80]  Mary Frecker,et al.  Finite element analysis and validation of dielectric elastomer actuators used for active origami , 2014 .

[81]  Koryo Miura,et al.  The Science of Miura-Ori: A Review , 2009 .

[82]  Liang-Boon Wee,et al.  Design of a novel compliant differential Shape Memory Alloy actuator , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[83]  Qian Cheng,et al.  Folding paper-based lithium-ion batteries for higher areal energy densities. , 2013, Nano letters.

[84]  Byoungkwon An,et al.  Designing and programming self-folding sheets , 2014, Robotics Auton. Syst..

[85]  Joseph S. B. Mitchell,et al.  Folding flat silhouettes and wrapping polyhedral packages: new results in computational origami , 1999, SCG '99.

[86]  Paul E. I. Pounds,et al.  Paper Plane: Towards Disposable Low-Cost Folded Cellulose-Substrate UAVs , 2012, ICRA 2012.

[87]  Haluk E. Karaca,et al.  Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy , 2007 .

[88]  H. Okuzaki,et al.  A biomorphic origami actuator fabricated by folding a conducting paper , 2008 .

[89]  Dimitris C. Lagoudas,et al.  Design and Analysis of a Self-Folding SMA-SMP Composite Laminate , 2014 .

[90]  Shigeki Nashima,et al.  Characterization of GaAs-based micro-origami mirrors by optical actuation , 2004 .

[91]  M. Dickey,et al.  Self-folding of polymer sheets using local light absorption , 2012 .

[92]  Jeong Woo Han,et al.  All-solid-state, origami-type foldable supercapacitor chips with integrated series circuit analogues , 2014 .

[93]  A. Lendlein,et al.  Multifunctional Shape‐Memory Polymers , 2010, Advanced materials.

[94]  Marc Behl,et al.  Shape-Memory Polymers and Shape-Changing Polymers , 2009 .

[95]  Ivan Poupyrev,et al.  Gummi: a bendable computer , 2004, CHI '04.

[96]  Larry L. Howell,et al.  A Classification of Action Origami as Systems of Spherical Mechanisms , 2013 .

[97]  David Rubin,et al.  Introduction to Continuum Mechanics , 2009 .

[98]  Chris Henry,et al.  Variable stiffness materials for reconfigurable surface applications , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[99]  Hwan Chul Jeon,et al.  Controlled origami folding of hydrogel bilayers with sustained reversibility for robust microcarriers. , 2012, Angewandte Chemie.

[100]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[101]  Ronald S. Fearing,et al.  Fast scale prototyping for folded millirobots , 2008, 2008 IEEE International Conference on Robotics and Automation.

[102]  Thomas C. Hull On the Mathematics of Flat Origamis , 1994 .

[103]  Isaac L. Delimont,et al.  Material selection for elastic energy absorption in origami-inspired compliant corrugations , 2014 .

[104]  Keith A. Seffen,et al.  Growth and shape control of disks by bending and extension , 2013 .

[105]  E. Smela,et al.  Controlled Folding of Micrometer-Size Structures , 1995, Science.

[106]  Tomohiro Tachi,et al.  Freeform Variations of Origami , 2010 .

[107]  Evin Gultepe,et al.  Origami Inspired Self-assembly of Patterned and Reconfigurable Particles , 2013, Journal of visualized experiments : JoVE.

[108]  Robert J. Bernhard,et al.  Dynamic modelling of a shape memory alloy adaptive tuned vibration absorber , 2005 .

[109]  Ergun Akleman,et al.  Connectivity of Shape Memory Alloy-based Self-Folding Structures , 2014 .

[110]  Erik D. Demaine,et al.  Folding and Unfolding Linkages, Paper, and Polyhedra , 2000, JCDCG.

[111]  M. A. Northrup,et al.  Thin Film Shape Memory Alloy Microactuators , 1996, Microelectromechanical Systems (MEMS).

[112]  Jonathan Schneider Flat-Foldability of Origami Crease Patterns , 2004 .

[113]  Wei Li,et al.  Novel Pixelated Multicellular Representation for Origami Structures That Innovates Computational Design and Control , 2013 .

[114]  Quan Li,et al.  Intelligent stimuli-responsive materials : from well-defined nanostructures to applications , 2013 .

[115]  Tetsuo Ida,et al.  Computational Origami System Eos , 2006 .

[116]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[117]  Leonid Ionov,et al.  Fully biodegradable self-rolled polymer tubes: a candidate for tissue engineering scaffolds. , 2011, Biomacromolecules.

[118]  A. Diaz,et al.  Mechanical properties of electrochemically prepared polypyrrole films , 1983 .

[119]  Dong-Woo Suh,et al.  Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties , 2013, Science and technology of advanced materials.

[120]  Y. Bar-Cohen,et al.  Electroactive Polymer Actuators and Sensors , 2008 .

[121]  Dimitris C. Lagoudas,et al.  Folding patterns and shape optimization using SMA-based self-folding laminates , 2014, Smart Structures.

[122]  Larry L. Howell,et al.  Identifying links between origami and compliant mechanisms , 2011 .

[123]  Martha J. Mancewicz Developable Surfaces: Properties, Representations and Methods of Design , 1992 .

[124]  Robert G. Loewy,et al.  REVIEW ARTICLE: Recent developments in smart structures with aeronautical applications , 1997 .

[125]  Karthik Ramani,et al.  Reconfigurable Foldable Spatial Mechanisms and Robotic Forms Inspired by Kinetogami , 2012 .

[126]  Kyu-Jin Cho,et al.  The Deformable Wheel Robot Using Magic-Ball Origami Structure , 2013 .

[127]  Z. Suo Theory of dielectric elastomers , 2010 .

[128]  Jiayao Ma,et al.  The Origami Crash Box , 2011 .

[129]  Darren J. Hartl,et al.  Design and numerical analysis of an SMA mesh-based self-folding sheet , 2013 .

[130]  Robert J. Lang,et al.  A computational algorithm for origami design , 1996, SCG '96.

[131]  Mehdi Farshad,et al.  Magnetoactive elastomer composites , 2004 .

[132]  Roel Vertegaal,et al.  PaperPhone: understanding the use of bend gestures in mobile devices with flexible electronic paper displays , 2011, CHI.

[133]  Patrick Baudisch,et al.  Laser origami: laser-cutting 3D objects , 2014, INTR.

[134]  K. Kuribayashi,et al.  Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil , 2006 .

[135]  P. Krulevitch,et al.  A practical microgripper by fine alignment, eutectic bonding and SMA actuation , 1995 .

[136]  J. M. Bush,et al.  Capillary origami in nature , 2009 .

[137]  Tomohiro Tachi Generalization of rigid foldable quadrilateral mesh origami , 2009 .

[138]  Frank Simon,et al.  A Novel Approach for the Fabrication of Silica and Silica/Metal Hybrid Microtubes , 2009 .

[139]  David H Gracias,et al.  Three-dimensional fabrication at small size scales. , 2010, Small.

[140]  Tomohiro Tachi,et al.  Designing Freeform Origami Tessellations by Generalizing Resch's Patterns , 2013 .

[141]  Spencer P. Magleby,et al.  An Origami-Inspired Self-Deployable Array , 2013 .

[142]  DAVID FISHLOCK On the flat , 1982, Nature.

[143]  Marko Budimir,et al.  Piezoelectric anisotropy and free energy instability in classic perovskites , 2006 .

[144]  Mark Schenk,et al.  Geometry of Miura-folded metamaterials , 2013, Proceedings of the National Academy of Sciences.

[145]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[146]  Hongyan He,et al.  Design of a novel hydrogel-based intelligent system for controlled drug release. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[147]  L. J. Lee,et al.  Self-folding of three-dimensional hydrogel microstructures. , 2005, The journal of physical chemistry. B.

[148]  E. Rothwell,et al.  An origami tunable metamaterial , 2012 .

[149]  Malcolm Sambridge,et al.  Genetic algorithms: a powerful tool for large-scale nonlinear optimization problems , 1994 .

[150]  P. Mather,et al.  Shape Memory Polymer Research , 2009 .

[151]  André R Studart,et al.  Bioinspired materials that self-shape through programmed microstructures. , 2014, Soft matter.

[152]  Markus Löchtefeld,et al.  Morphees: toward high "shape resolution" in self-actuated flexible mobile devices , 2013, CHI.

[153]  Neil Morgan,et al.  Medical shape memory alloy applications—the market and its products , 2004 .

[154]  Biruta Kresling,et al.  Origami-structures in nature: lessons in designing “smart” materials , 2012 .

[155]  Nancy M. Amato,et al.  The Toggle Local Planner for sampling-based motion planning , 2012, 2012 IEEE International Conference on Robotics and Automation.

[156]  Dragan Damjanovic,et al.  Electrostrictive and Piezoelectric Materials for Actuator Applications , 1992 .

[157]  Valeriy Luchnikov,et al.  Toroidal hollow-core microcavities produced by self-rolling of strained polymer bilayer films , 2008, 2301.06922.

[158]  Mary Frecker,et al.  Multi-Field Responsive Origami Structures: Preliminary Modeling and Experiments , 2013 .

[159]  Robert J. Lang Origami: Complexity in Creases (Again) , 2004 .

[160]  K. Bhattacharya,et al.  Gaussian curvature from flat elastica sheets , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[161]  Dimitris C. Lagoudas,et al.  Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys , 2005 .

[162]  Candace K. Chan,et al.  Origami lithium-ion batteries , 2014, Nature Communications.

[163]  K. Eriksson,et al.  Airbag Folding Based on Origami Mathematics , 2006 .

[164]  OcampoJosé M. Zanardi,et al.  Characterization of GaAs-based micro-origami mirrors by optical actuation , 2004 .

[165]  Julian F. V. Vincent,et al.  The geometry of unfolding tree leaves , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[166]  I. Lundström,et al.  Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. , 2000, Science.

[167]  Tomohiro Tachi Geometric Considerations for the Design of Rigid Origami Structures , 2010 .

[168]  J Zanardiocampo,et al.  Characterization of GaAs-based micro-origami mirrors by optical actuation , 2004 .

[169]  Tomohiro Tachi,et al.  Origamizing Polyhedral Surfaces , 2010, IEEE Transactions on Visualization and Computer Graphics.

[170]  Robert J. Wood,et al.  Robot self-assembly by folding: A printed inchworm robot , 2013, 2013 IEEE International Conference on Robotics and Automation.

[171]  Shoji Takeuchi,et al.  Foldable Parylene Origami Sheets Covered with Cells: Toward Applications in Bio-Implantable Devices , 2016 .

[172]  R. Fernandes,et al.  Self-folding polymeric containers for encapsulation and delivery of drugs. , 2012, Advanced drug delivery reviews.

[173]  Paris von Lockette,et al.  Folding Actuation and Locomotion of Novel Magneto-Active Elastomer (MAE) Composites , 2013 .

[174]  Stephen Z. D. Cheng,et al.  Three-dimensional actuators transformed from the programmed two-dimensional structures via bending, twisting and folding mechanisms , 2011 .

[175]  H Tanaka,et al.  Programmable matter by folding , 2010, Proceedings of the National Academy of Sciences.

[176]  David Pohl,et al.  Engineered spacecraft deployables influenced by nature , 2009, Optical Engineering + Applications.

[177]  C. P. Quagli,et al.  Parametric modelling of an air-liftable origami-inspired deployable shelter with a novel erection strategy , 2014 .

[178]  A. Lendlein,et al.  Shape-memory polymers , 2002 .

[179]  H. Ryu,et al.  Analysis of efficiency droop in nitride light-emitting diodes by the reduced effective volume of InGaN active material , 2012 .

[180]  Stefanie Müller,et al.  LaserOrigami: laser-cutting 3D objects , 2013, CHI.

[181]  Jian S. Dai,et al.  Kinematic and Stiffness Analysis of an Origami-Type Carton , 2013 .

[182]  Evin Gultepe,et al.  Self-folding devices and materials for biomedical applications. , 2012, Trends in biotechnology.

[183]  K A Seffen,et al.  Compliant shell mechanisms , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[184]  Stefan Seelecke,et al.  BATMAV: a biologically inspired micro air vehicle for flapping flight: kinematic modeling , 2008, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[185]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[186]  L Mahadevan,et al.  Self-Organized Origami , 2005, Science.

[187]  Sridhar Kota,et al.  Design of Compliant Mechanisms for Morphing Structural Shapes , 2003 .

[188]  Victor Ya. Prinz,et al.  Application of semiconductor micro- and nanotubes in biology , 2003 .

[189]  Marshall W. Bern,et al.  The complexity of flat origami , 1996, SODA '96.

[190]  Leonid Ionov,et al.  Nature‐Inspired Stimuli‐Responsive Self‐Folding Materials , 2013 .

[191]  E. Demaine,et al.  Self-folding with shape memory composites† , 2013 .

[192]  Emmanuel Baranger,et al.  Sandwich Structures with folded core: mechanical modeling and impact simulations , 2009 .

[193]  Ronald S. Fearing,et al.  Fast scale prototyping for folded millirobots , 2008, ICRA.

[194]  Martin L. Dunn,et al.  Photomechanics of light-activated polymers , 2009 .

[195]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[196]  Alastair Johnson Novel hybrid structural core sandwich materials for aircraft applications , 2008 .

[197]  D. Gracias,et al.  Pick-and-place using chemically actuated microgrippers. , 2008, Journal of the American Chemical Society.

[198]  Liyong Tong,et al.  Modeling for the electro-magneto-thermo-elastic properties of piezoelectric-magnetic fiber reinforced composites , 2002 .

[199]  Alejandro R. Diaz,et al.  Origami Design by Topology Optimization , 2013 .

[200]  Nancy M. Amato,et al.  Multi-robot caravanning , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[201]  Brian Sanders,et al.  Vibration and Flutter Characteristics of a Folding Wing , 2009 .

[202]  James G. Boyd,et al.  Effective properties of three-phase electro-magneto-elastic composites , 2005 .

[203]  Nancy M. Amato,et al.  Lazy Toggle PRM: A single-query approach to motion planning , 2013, 2013 IEEE International Conference on Robotics and Automation.

[204]  Mary Frecker,et al.  Origami-Inspired Folding and Unfolding of Structures: Fundamental Investigations of Dielectric Elastomer-Based Active Materials , 2013 .

[205]  Rick Beech Action Origami: Over 25 Animated Paperfolding Projects , 2002 .

[206]  Jie Qi,et al.  Electronic popables: exploring paper-based computing through an interactive pop-up book , 2010, TEI '10.

[207]  Tomohiro Tachi Origamizing 3D surface by symmetry constraints , 2007, SIGGRAPH '07.

[208]  Robert J. Wood,et al.  Towards printable robotics: Origami-inspired planar fabrication of three-dimensional mechanisms , 2011, 2011 IEEE International Conference on Robotics and Automation.

[209]  Tetsuo Ida,et al.  Computational origami environment on the web , 2008, Frontiers of Computer Science in China.

[210]  Valeriy Luchnikov,et al.  Fabrication of metallic microtubes using self-rolled polymer tubes as templates. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[211]  Tomohiro Tachi,et al.  Simulation of Rigid Origami , 2006 .

[212]  Darren J. Hartl,et al.  Design of a Massively Reconfigurable Origami Space Structure Incorporating Shape Memory Alloys , 2012 .

[213]  Spencer P. Magleby,et al.  Accommodating Thickness in Origami-Based Deployable Arrays , 2013 .

[214]  Tetsuo Ida,et al.  Modeling Origami for Computational Construction and Beyond , 2007, ICCSA.

[215]  S D Guest,et al.  Deployable membranes designed from folding tree leaves , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[216]  Nancy M. Amato,et al.  FIRM: Feedback controller-based information-state roadmap - A framework for motion planning under uncertainty , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[217]  F. Haas,et al.  Wing folding and the functional morphology of the wing base in Coleoptera. , 2001, Zoology.

[218]  Y. Jung,et al.  FLUTTER SPEED ESTIMATION FOR FOLDING WING SYSTEM , 2011 .

[219]  Shigeki Nashima,et al.  Optical actuation of micromirrors fabricated by the micro-origami technique , 2003 .

[220]  M. Dunn,et al.  Photo-origami—Bending and folding polymers with light , 2012 .

[221]  Jonathan Rossiter,et al.  Kirigami design and fabrication for biomimetic robotics , 2014, Smart Structures.

[222]  Vijay Kumar,et al.  A Simulator for Origami-Inspired Self-Reconfigurable Robots , 2011 .

[223]  T. Christenson,et al.  Thermo-magnetic metal flexure actuators , 1992, Technical Digest IEEE Solid-State Sensor and Actuator Workshop.

[224]  Sergio Pellegrino,et al.  Origami Sunshield Concepts for Space Telescopes , 2013 .

[225]  Larry L. Howell,et al.  Oriceps: Origami-Inspired Forceps , 2013 .

[226]  Joseph M. Gattas,et al.  Quasi-static impact response of alternative origami-core sandwich panels , 2013 .

[227]  Seung-Man Yang,et al.  Innenrücktitelbild: Controlled Origami Folding of Hydrogel Bilayers with Sustained Reversibility for Robust Microcarriers (Angew. Chem. 6/2012) , 2012 .

[228]  Martin L. Dunn,et al.  Photo-induced deformation of active polymer films: Single spot irradiation , 2011 .

[229]  A. Mata,et al.  Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems , 2005, Biomedical microdevices.

[230]  Robert J. Wood,et al.  Self-folding shape memory laminates for automated fabrication , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[231]  Robert J. Lang,et al.  Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education , 2011 .

[232]  Shenguang Ge,et al.  A three-dimensional origami-based immuno-biofuel cell for self-powered, low-cost, and sensitive point-of-care testing. , 2014, Chemical communications.

[233]  S. Saravanan,et al.  Array of micromachined components fabricated using "micro-origami" method , 2002, 2002 International Microprocesses and Nanotechnology Conference, 2002. Digest of Papers..

[234]  Takashi Maeno,et al.  Development of a Miniature Robot Finger with a Variable Stiffness Mechanism using Shape Memory Alloy , 2004 .

[235]  L G Machado,et al.  Medical applications of shape memory alloys. , 2003, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[236]  Terrence A. Weisshaar,et al.  Aeroelastic Studies on a Folding Wing Configuration , 2005 .

[237]  Kyu-Jin Cho,et al.  Design of deformable-wheeled robot based on origami structure with shape memory alloy coil spring , 2013, 2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI).

[238]  Mary Frecker,et al.  Recent Advances in Optimization of Smart Structures and Actuators , 2003 .

[239]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[240]  Peter Fratzl,et al.  Origami-like unfolding of hydro-actuated ice plant seed capsules. , 2011, Nature communications.

[241]  Gregory S. Chirikjian,et al.  Origami Rotors: Imparting Continuous Rotation to a Moving Platform Using Compliant Flexure Hinges , 2013 .

[242]  Youwei Du,et al.  Martensitic transformation and related magnetic effects in Ni—Mn-based ferromagnetic shape memory alloys , 2013 .

[243]  Tomohiro Tachi,et al.  Freeform Rigid-Foldable Structure using Bidirectionally Flat-Foldable Planar Quadrilateral Mesh , 2010, AAG.

[244]  Thomas Tørring,et al.  DNA origami: a quantum leap for self-assembly of complex structures. , 2011, Chemical Society reviews.