Recursive parameter estimation for Hammerstein-Wiener systems using modified EKF algorithm.

This paper focuses on the recursive parameter estimation for the single input single output Hammerstein-Wiener system model, and the study is then extended to a rarely mentioned multiple input single output Hammerstein-Wiener system. Inspired by the extended Kalman filter algorithm, two basic recursive algorithms are derived from the first and the second order Taylor approximation. Based on the form of the first order approximation algorithm, a modified algorithm with larger parameter convergence domain is proposed to cope with the problem of small parameter convergence domain of the first order one and the application limit of the second order one. The validity of the modification on the expansion of convergence domain is shown from the convergence analysis and is demonstrated with two simulation cases.

[1]  Er-Wei Bai,et al.  How Nonlinear Parametric Wiener System Identification is Under Gaussian Inputs? , 2012, IEEE Transactions on Automatic Control.

[2]  Yucai Zhu,et al.  Estimation of an N-L-N Hammerstein-Wiener model , 2002, Autom..

[3]  J. Chu,et al.  Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle , 2013 .

[4]  Zhizhong Mao,et al.  Adaptive control of stochastic Hammerstein systems with dead-zone input non-linearity , 2015 .

[5]  Guoqi Li,et al.  Identification of Wiener Systems With Clipped Observations , 2006, IEEE Transactions on Signal Processing.

[6]  Dongqing Wang,et al.  Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models , 2016, Appl. Math. Lett..

[7]  Maryam Dehghani,et al.  Identification of multivariable nonlinear systems in the presence of colored noises using iterative hierarchical least squares algorithm. , 2014, ISA transactions.

[8]  Konrad Reif,et al.  Stochastic stability of the discrete-time extended Kalman filter , 1999, IEEE Trans. Autom. Control..

[9]  Maciej Ławryńczuk,et al.  Nonlinear predictive control for Hammerstein-Wiener systems. , 2015, ISA transactions.

[10]  Yan Wang,et al.  Stochastic gradient algorithm for multi-input multi-output Hammerstein FIR-MA-like systems using the data filtering , 2015, J. Frankl. Inst..

[11]  Fouad Giri,et al.  A unified approach for the parametric identification of SISO/MIMO Wiener and Hammerstein systems , 2014, J. Frankl. Inst..

[12]  R.A.M. Soeterboek,et al.  A predictive controller for the Mach number in a transonic wind tunnel , 1991, IEEE Control Systems.

[13]  Lennart Ljung,et al.  Identification of Hammerstein-Wiener models , 2013, Autom..

[14]  Keith Williams,et al.  Supersonic, variable-throat, blow-down wind tunnel control using genetic algorithms, neural networks, and gain scheduled PID , 2007, Applied Intelligence.

[15]  Dan Zhang,et al.  Nonfragile Distributed Filtering for T–S Fuzzy Systems in Sensor Networks , 2015, IEEE Transactions on Fuzzy Systems.

[16]  Jozef Vörös,et al.  Identification of nonlinear dynamic systems with input saturation and output backlash using three-block cascade models , 2014, J. Frankl. Inst..

[17]  Xin Wang,et al.  Multi-model direct adaptive decoupling control with application to the wind tunnel system. , 2005, ISA transactions.

[18]  Dan Zhang,et al.  Energy-efficient H∞ filtering for networked systems with stochastic signal transmissions , 2014, Signal Process..

[19]  Johan Schoukens,et al.  Hammerstein-Wiener system estimator initialization , 2002, Autom..

[20]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[21]  Jozef Vörös,et al.  Iterative identification of nonlinear dynamic systems with output backlash using three-block cascade models , 2015 .

[22]  Peng Shi,et al.  Energy-Efficient Distributed Filtering in Sensor Networks: A Unified Switched System Approach , 2017, IEEE Transactions on Cybernetics.

[23]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[24]  Er-Wei Bai A blind approach to the Hammerstein-Wiener model identification , 2002, Autom..

[25]  Feng Ding,et al.  Hierarchical Least Squares Estimation Algorithm for Hammerstein–Wiener Systems , 2012, IEEE Signal Processing Letters.

[26]  M. Boutayeb,et al.  Convergence analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-time systems , 1997, IEEE Trans. Autom. Control..

[27]  Zhizhong Mao,et al.  Adaptive control of Hammerstein–Wiener nonlinear systems , 2016, Int. J. Syst. Sci..

[28]  Brett Ninness,et al.  Generalised Hammerstein–Wiener system estimation and a benchmark application , 2012 .

[29]  Dan Zhang,et al.  Robust Fuzzy-Model-Based Filtering for Nonlinear Cyber-Physical Systems With Multiple Stochastic Incomplete Measurements , 2017, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[30]  Feng Yu,et al.  Recursive parameter identification of Hammerstein-Wiener systems with measurement noise , 2014, Signal Process..

[31]  Feng Yu,et al.  Recursive identification for Hammerstein–Wiener systems with dead-zone input nonlinearity , 2013 .

[32]  Feng Ding,et al.  Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems , 2008, Comput. Math. Appl..

[33]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..

[34]  Mohamed Boutayeb,et al.  A strong tracking extended Kalman observer for nonlinear discrete-time systems , 1999, IEEE Trans. Autom. Control..

[35]  Han-Fu Chen,et al.  Recursive identification for Wiener model with discontinuous piece-wise linear function , 2006, IEEE Transactions on Automatic Control.

[36]  Jozef Vörös,et al.  Compound Operator Decomposition and Its Application to Hammerstein and Wiener Systems , 2010 .

[37]  G. R. Averin The Hammerstein–Wiener Model for Identification of Stochastic Systems , 2003 .

[38]  Jozef Vörös,et al.  Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities , 2007, Syst. Control. Lett..

[39]  Somanath Majhi,et al.  Identification of a class of Wiener and Hammerstein-type nonlinear processes with monotonic static gains. , 2010, ISA transactions.

[40]  Feng Ding,et al.  Parameter estimation for an input nonlinear state space system with time delay , 2014, J. Frankl. Inst..