A Statistical Detection of an Anomaly from a Few Noisy Tomographic Projections

The problem of detecting an anomaly/target from a very limited number of noisy tomographic projections is addressed from the statistical point of view. The imaged object is composed of an environment, considered as a nuisance parameter, with a possibly hidden anomaly/target. The GLR test is used to solve the problem. When the projection linearly depends on the nuisance parameters, the GLR test coincides with an optimal statistical invariant test.

[1]  Stephen E. Fienberg,et al.  Testing Statistical Hypotheses , 2005 .

[2]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[3]  R. Lewitt Alternatives to voxels for image representation in iterative reconstruction algorithms , 1992, Physics in medicine and biology.

[4]  Yoram Bresler,et al.  Three-dimensional reconstruction from projections with incomplete and noisy data by object estimation , 1987, IEEE Trans. Acoust. Speech Signal Process..

[5]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[6]  Katsushi Ikeuchi,et al.  Sensor Modeling, Probabilistic Hypothesis Generation, and Robust Localization for Object Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  A. Willsky,et al.  Reconstruction from projections based on detection and estimation of objects--Parts I and II: Performance analysis and robustness analysis , 1984 .

[8]  I. Nikiforov,et al.  Optimal statistical fault detection with nuisance parameters , 2003, Proceedings of the 2003 American Control Conference, 2003..

[9]  A. Wald Tests of statistical hypotheses concerning several parameters when the number of observations is large , 1943 .

[10]  Antoine Grall,et al.  Statistical fault detection with linear or non-linear nuisance parameters , 2003 .

[11]  Gang Wang,et al.  Automatic identification of different types of welding defects in radiographic images , 2002 .

[12]  R. Daval Eléments de théorie de la décision , 1997 .

[13]  Ignace Lemahieu,et al.  Statistical detection of defects in radiographic images in nondestructive testing , 2002, Signal Process..

[14]  Karl-Rudolf Koch,et al.  Parameter estimation and hypothesis testing in linear models , 1988 .

[15]  A. Macovski,et al.  A Natural Pixel Decomposition for Two-Dimensional Image Reconstruction , 1981, IEEE Transactions on Biomedical Engineering.

[16]  G. W. Wecksung,et al.  Local basis-function approach to computed tomography. , 1985, Applied optics.

[17]  W. Clem Karl,et al.  A multiscale hypothesis testing approach to anomaly detection and localization from noisy tomographic data , 1998, IEEE Trans. Image Process..