Moving target detection in thermal infrared imagery using spatiotemporal information.

An efficient target detection algorithm for detecting moving targets in infrared imagery using spatiotemporal information is presented. The output of the spatial processing serves as input to the temporal stage in a layered manner. The spatial information is obtained using joint space-spatial-frequency distribution and Rényi entropy. Temporal information is incorporated using background subtraction. By utilizing both spatial and temporal information, it is observed that the proposed method can achieve both high detection and a low false-alarm rate. The method is validated with experimentally generated data consisting of a variety of moving targets. Experimental results demonstrate a high value of F-measure for the proposed algorithm.

[1]  Bir Bhanu,et al.  Computer Vision Beyond the Visible Spectrum , 2004 .

[2]  M. Sigari,et al.  Fuzzy Running Average and Fuzzy Background Subtraction: Concepts and Application , 2008 .

[3]  Yuan Zhao,et al.  Salient target detection based on pseudo-Wigner-Ville distribution and Rényi entropy. , 2010, Optics letters.

[4]  Xin Li,et al.  Pedestrian detection and tracking in infrared imagery using shape and appearance , 2007, Comput. Vis. Image Underst..

[5]  John K. Goutsias,et al.  Automatic target detection and tracking in forward-looking infrared image sequences using morphological connected operators , 2004, J. Electronic Imaging.

[6]  HyunWook Park,et al.  Automatic target recognition using target boundary information in FLIR images , 2000 .

[7]  Majid Mirmehdi,et al.  Detection and Tracking of Very Small Low Contrast Objects , 1998, BMVC.

[8]  A. Rényi On Measures of Entropy and Information , 1961 .

[9]  Vinayak S. Naik,et al.  A line in the sand: a wireless sensor network for target detection, classification, and tracking , 2004, Comput. Networks.

[10]  Grzegorz Cielniak,et al.  Real-time people tracking for mobile robots using thermal vision , 2006, Robotics Auton. Syst..

[11]  J. Aggarwal,et al.  Detecting moving objects in airborne forward looking infra-red sequences , 1999, Proceedings IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (CVBVS'99).

[12]  Olivier J. J. Michel,et al.  Time-frequency complexity and information , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[13]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[14]  Larry S. Davis,et al.  W4: Real-Time Surveillance of People and Their Activities , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Katsushi Ikeuchi,et al.  Recognizing vehicle in infra-red images using IMAP parallel vision board , 1999, Proceedings 199 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems (Cat. No.99TH8383).

[16]  Hélène Laurent,et al.  Review and evaluation of commonly-implemented background subtraction algorithms , 2008, 2008 19th International Conference on Pattern Recognition.

[17]  Roberto Manduchi,et al.  Obstacle Detection and Terrain Classification for Autonomous Off-Road Navigation , 2005, Auton. Robots.

[18]  Antonio Fernández-Caballero,et al.  Optical flow or image subtraction in human detection from infrared camera on mobile robot , 2010, Robotics Auton. Syst..

[19]  Chao Yu,et al.  Multi-sensor Intelligent Transportation Monitoring System Based on Information Fusion Technology , 2007, 2007 International Conference on Convergence Information Technology (ICCIT 2007).

[20]  Mubarak Shah,et al.  Automatically Tuning Background Subtraction Parameters using Particle Swarm Optimization , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[21]  Shireen Elhabian,et al.  Moving Object Detection in Spatial Domain using Background Removal Techniques - State-of-Art , 2008 .

[22]  Nikos Paragios,et al.  Background modeling and subtraction of dynamic scenes , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[23]  James W. Davis,et al.  A Two-Stage Template Approach to Person Detection in Thermal Imagery , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[24]  Wei-Yun Yau,et al.  A Framework for Foreground Detection in Complex Environments , 2004, ECCV Workshop SMVP.

[25]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[26]  Yuichi Motai,et al.  Human tracking from a mobile agent: Optical flow and Kalman filter arbitration , 2012, Signal Process. Image Commun..

[27]  Badrinath Roysam,et al.  Image change detection algorithms: a systematic survey , 2005, IEEE Transactions on Image Processing.

[28]  Lim Way Soong,et al.  Extended fuzzy background modeling for moving vehicle detection using infrared vision , 2011 .

[29]  Rama Chellappa,et al.  A multi-fractal formalism for stabilization, object detection and tracking in FLIR sequences , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[30]  Katsushi Ikeuchi,et al.  Recognizing vehicles in infrared images using IMAP parallel vision board , 2001, IEEE Trans. Intell. Transp. Syst..

[31]  Vittorio Murino,et al.  Background Subtraction for Automated Multisensor Surveillance: A Comprehensive Review , 2010, EURASIP J. Adv. Signal Process..

[32]  Robert Martin Eisberg,et al.  Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, 2nd Edition , 1974 .

[33]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[34]  Lei Ren,et al.  Search Aid System Based on Machine Vision and Its Visual Attention Model for Rescue Target Detection , 2010, 2010 Second WRI Global Congress on Intelligent Systems.

[35]  Song Zheng,et al.  An Improved Moving Object Detection Algorithm Based on Frame Difference and Edge Detection , 2007, Fourth International Conference on Image and Graphics (ICIG 2007).

[36]  George Bebis,et al.  Robust Video-Based Surveillance by Integrating Target Detection with Tracking , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[37]  Liyuan Li,et al.  Integrating intensity and texture differences for robust change detection , 2002, IEEE Trans. Image Process..

[38]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[39]  Salvador Gabarda Tébar New contributions to the multidimensional analysis of signals and images through the pseudo-Wigner Distribution , 2008 .

[40]  H. Wechsler,et al.  Joint spatial/spatial-frequency representation , 1988 .

[41]  Robert K. Adair,et al.  James Daniel Hardy , 1986 .

[42]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.