Blind prediction of homo‐ and hetero‐protein complexes: The CASP13‐CAPRI experiment

We present the results for CAPRI Round 46, the third joint CASP‐CAPRI protein assembly prediction challenge. The Round comprised a total of 20 targets including 14 homo‐oligomers and 6 heterocomplexes. Eight of the homo‐oligomer targets and one heterodimer comprised proteins that could be readily modeled using templates from the Protein Data Bank, often available for the full assembly. The remaining 11 targets comprised 5 homodimers, 3 heterodimers, and two higher‐order assemblies. These were more difficult to model, as their prediction mainly involved “ab‐initio” docking of subunit models derived from distantly related templates. A total of ~30 CAPRI groups, including 9 automatic servers, submitted on average ~2000 models per target. About 17 groups participated in the CAPRI scoring rounds, offered for most targets, submitting ~170 models per target. The prediction performance, measured by the fraction of models of acceptable quality or higher submitted across all predictors groups, was very good to excellent for the nine easy targets. Poorer performance was achieved by predictors for the 11 difficult targets, with medium and high quality models submitted for only 3 of these targets. A similar performance “gap” was displayed by scorer groups, highlighting yet again the unmet challenge of modeling the conformational changes of the protein components that occur upon binding or that must be accounted for in template‐based modeling. Our analysis also indicates that residues in binding interfaces were less well predicted in this set of targets than in previous Rounds, providing useful insights for directions of future improvements.

Elodie Laine | Alessandra Carbone | Adam Liwo | Genki Terashi | Daisuke Kihara | Zhen Cao | Luigi Cavallo | Sameer Velankar | Xiaoqin Zou | Sheng-You Huang | Minkyung Baek | Chaok Seok | Zhiping Weng | Jianlin Cheng | Hang Shi | Alexandre M J J Bonvin | Silvia Crivelli | Dima Kozakov | Dmitri Beglov | Sandor Vajda | Cunliang Geng | Zhiwei Ma | David W Ritchie | Isaure Chauvot de Beauchêne | Brian Jiménez-García | Thom Vreven | Ren Kong | Shan Chang | Kliment Olechnovič | Mikhail Ignatov | Miguel Romero-Durana | Charles Christoffer | Maria Elisa Ruiz Echartea | Jie Hou | Ilya A Vakser | Cezary Czaplewski | Sergei Grudinin | Mikhail Karasikov | Guillaume Pagès | Jorge Roel-Touris | Varsha D. Badal | Petras J Kundrotas | Maria Kadukova | Česlovas Venclovas | Yumeng Yan | Dzmitry Padhorny | Israel Desta | Taeyong Park | Ragul Gowthaman | Johnathan D. Guest | Juan Fernandez-Recio | Woong-Hee Shin | Tunde Aderinwale | Xianjin Xu | Romina Oliva | Marc F Lensink | Shoshana J Wodak | Marie-Dominique Devignes | Raphaël A G Chaleil | Paul A Bates | Miriam Eisenstein | Brian G Pierce | Li Xue | Adrien S J Melquiond | Liming Qiu | Iain H Moal | Yue Cao | Sweta Vangaveti | Guillaume Brysbaert | Yang Shen | Sergey Samsonov | Bernard Maigret | Nurul Nadzirin | Hyeonuk Woo | Jörg Schaarschmidt | Francesco Ambrosetti | Charles W Christoffer | Paweł Krupa | Rui Duan | Tyler Borrman | Merav Braitbard | Agnieszka Karczynska | Varsha D Badal | Tereza Gerguri | Ran-Ran Liu | Xi-Ming Xu | Emilia Lubecka | Agnieszka Lipska | Magdalena Mozolewska | Łukasz Golon | Mireia Rosell | Luis Angel Rodríguez-Lumbreras | Lucía Díaz-Bueno | Sai Raghavendra Maddhuri Venkata Subraman | Kathyn Porter | Sergey Kotelnikov | Didier Barradas-Bautista | Lirane Bitton | Dina Scheidman-Duhovny | Justas DapkŪnas | Saveliy Belkin | Devlina Chakravarty | Johnathan D Guest | Benjamin Ryan Merideth | Panos I Koukos | Mikael E Trellet | Charlotte W van Noort | Rodrigo V Honorato | Raphael A. G. Chaleil | Agnieszka S. Karczynska | A. Liwo | Z. Weng | S. Wodak | D. Kihara | Jianlin Cheng | Č. Venclovas | S. Vajda | M. Eisenstein | I. Vakser | J. Fernández-Recio | P. Bates | Chaok Seok | B. Pierce | Xianjin Xu | D. Kozakov | D. Beglov | D. Ritchie | S. Velankar | C. Czaplewski | A. Carbone | S. Crivelli | Yang Shen | Mikhail Karasikov | X. Zou | Shan Chang | M. Lensink | M. Trellet | A. Bonvin | T. Vreven | I. Moal | B. Jiménez-García | P. Krupa | M. Mozolewska | L. Xue | B. Maigret | A. Melquiond | M. Devignes | É. Laine | R. Gowthaman | Didier Barradas-Bautista | Mireia Rosell | D. Padhorny | Devlina Chakravarty | Woong-Hee Shin | P. Kundrotas | L. Cavallo | R. Oliva | G. Brysbaert | Sergei Grudinin | F. Ambrosetti | Jie Hou | S. Samsonov | Genki Terashi | Zhen Cao | Tyler Borrman | Shengyou Huang | Taeyong Park | Hyeonuk Woo | Yumeng Yan | A. Lipska | E. Lubecka | Łukasz Golon | Miguel Romero-Durana | R. Kong | Saveliy Belkin | J. Dapkūnas | Lirane Bitton | R. Honorato | Charlotte W. van Noort | Liming Qiu | Mikhail Ignatov | Tereza Gerguri | Kliment Olechnovič | Yue Cao | Isaure Chauvot de Beauchêne | Maria Kadukova | Nurul Nadzirin | M. Braitbard | S. Vangaveti | J. Schaarschmidt | Zhiwei Ma | J. Schaarschmidt | M. Baek | Israel T. Desta | S. Kotelnikov | C. Geng | J. Roel-Touris | R. Duan | Luis A Rodríguez-Lumbreras | Guillaume Pagès | Tunde Aderinwale | P. Koukos | Hang Shi | Ranran Liu | Xi-Ming Xu | Lucía Díaz-Bueno | Sai Raghavendra Maddhuri Venkata Subraman | Kathyn Porter | Dina Scheidman-Duhovny | Benjamin Ryan Merideth | M. E. R. Echartea | Brian Jiménez‐García | Francesco Ambrosetti | Jorge Roel‐Touris | M. E. Echartea

[1]  Jose M. Duarte,et al.  Automated evaluation of quaternary structures from protein crystals , 2017, bioRxiv.

[2]  T. Yeates Geometric Principles for Designing Highly Symmetric Self-Assembling Protein Nanomaterials. , 2017, Annual review of biophysics.

[3]  SödingJohannes Protein homology detection by HMM--HMM comparison , 2005 .

[4]  Torsten Schwede,et al.  Assessment of protein assembly prediction in CASP12 , 2018, Proteins.

[5]  Hongyi Zhou,et al.  Distance‐scaled, finite ideal‐gas reference state improves structure‐derived potentials of mean force for structure selection and stability prediction , 2002, Protein science : a publication of the Protein Society.

[6]  Thomas A. Hopf,et al.  Protein structure prediction from sequence variation , 2012, Nature Biotechnology.

[7]  C. Chothia,et al.  The atomic structure of protein-protein recognition sites. , 1999, Journal of molecular biology.

[8]  Johannes Söding,et al.  Fast and accurate automatic structure prediction with HHpred , 2009, Proteins.

[9]  S. Wodak,et al.  Modeling protein–protein and protein–peptide complexes: CAPRI 6th edition , 2017, Proteins.

[10]  Shoshana J. Wodak,et al.  Generating and testing protein folds , 1993 .

[11]  Marc F Lensink,et al.  Docking and scoring protein interactions: CAPRI 2009 , 2010, Proteins.

[12]  Byunghan Lee,et al.  Deep learning in bioinformatics , 2016, Briefings Bioinform..

[13]  A. Barabasi,et al.  Network medicine : a network-based approach to human disease , 2010 .

[14]  Denise Gorse,et al.  Morphological aspects of oligomeric protein structures. , 2005, Progress in biophysics and molecular biology.

[15]  Pinak Chakrabarti,et al.  The subunit interfaces of weakly associated homodimeric proteins. , 2010, Journal of molecular biology.

[16]  Sergei Grudinin,et al.  Modeling and minimizing CAPRI round 30 symmetrical protein complexes from CASP‐11 structural models , 2017, Proteins.

[17]  Sameer Velankar,et al.  The challenge of modeling protein assemblies: the CASP12‐CAPRI experiment , 2018, Proteins.

[18]  Emmanuel D Levy,et al.  Structural, evolutionary, and assembly principles of protein oligomerization. , 2013, Progress in molecular biology and translational science.

[19]  Zoran Obradovic,et al.  Statistical analysis of interface similarity in crystals of homologous proteins. , 2008, Journal of molecular biology.

[20]  M. Eisenstein,et al.  Construction of molecular assemblies via docking: Modeling of tetramers with D2 symmetry , 2003, Proteins.

[21]  Brian D. Weitzner,et al.  De novo design of potent and selective mimics of IL-2 and IL-15 , 2019, Nature.

[22]  Dima Kozakov,et al.  The ClusPro web server for protein–protein docking , 2017, Nature Protocols.

[23]  A. Biegert,et al.  HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment , 2011, Nature Methods.

[24]  Ben M. Webb,et al.  Integrative structure modeling with IMP , 2017 .

[25]  Ceslovas Venclovas,et al.  The PPI 3 D web server for searching , analyzing and modeling protein – protein interactions in the context of 3 D structures , 2017 .

[26]  Kengo Kinoshita,et al.  Blind prediction of interfacial water positions in CAPRI , 2014, Proteins.

[27]  D. Ritchie,et al.  Protein docking using spherical polar Fourier correlations , 2000, Proteins.

[28]  S. Wodak,et al.  Extracting information on folding from the amino acid sequence: accurate predictions for protein regions with preferred conformation in the absence of tertiary interactions. , 1992, Biochemistry.

[29]  Narayanan Eswar,et al.  Protein structure modeling with MODELLER. , 2008, Methods in molecular biology.

[30]  Timothy A. Whitehead,et al.  Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing , 2012, Nature Biotechnology.

[31]  Genki Terashi,et al.  Modeling disordered protein interactions from biophysical principles , 2017, PLoS Comput. Biol..

[32]  Sheng-You Huang,et al.  HSYMDOCK: a docking web server for predicting the structure of protein homo-oligomers with Cn or Dn symmetry , 2018, Nucleic Acids Res..

[33]  Andrej Sali,et al.  Integrative Structural Biology , 2013, Science.

[34]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[35]  S. Wodak,et al.  Factors influencing the ability of knowledge-based potentials to identify native sequence-structure matches. , 1994, Journal of molecular biology.

[36]  J. Skolnick,et al.  GOAP: a generalized orientation-dependent, all-atom statistical potential for protein structure prediction. , 2011, Biophysical journal.

[37]  Marc F Lensink,et al.  Docking, scoring, and affinity prediction in CAPRI , 2013, Proteins.

[38]  Yang Zhang,et al.  Template-based structure modeling of protein-protein interactions. , 2014, Current opinion in structural biology.

[39]  Petras J. Kundrotas,et al.  Modeling CAPRI targets 110‐120 by template‐based and free docking using contact potential and combined scoring function , 2018, Proteins.

[40]  Daisuke Kihara,et al.  Prediction of homoprotein and heteroprotein complexes by protein docking and template‐based modeling: A CASP‐CAPRI experiment , 2016, Proteins.

[41]  S. Scheres,et al.  How cryo-EM is revolutionizing structural biology. , 2015, Trends in biochemical sciences.

[42]  Marc F Lensink,et al.  Blind predictions of protein interfaces by docking calculations in CAPRI , 2010, Proteins.

[43]  Patrick Aloy,et al.  Assessing the applicability of template-based protein docking in the twilight zone. , 2014, Structure.

[44]  Jose M. Duarte,et al.  Assessment of protein assembly prediction in CASP13 , 2019, Proteins.

[45]  R. Sharan,et al.  Protein networks in disease. , 2008, Genome research.

[46]  Stephen R. Comeau,et al.  Predicting oligomeric assemblies: N-mers a primer. , 2005, Journal of structural biology.

[47]  Ben M. Webb,et al.  Integrative structure modeling with the Integrative Modeling Platform , 2017, Protein science : a publication of the Protein Society.

[48]  Ruth Nussinov,et al.  An integrated suite of fast docking algorithms , 2010, Proteins.

[49]  Kliment Olechnovic,et al.  The PPI3D web server for searching, analyzing and modeling protein‐protein interactions in the context of 3D structures , 2016, Bioinform..

[50]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[51]  J. Janin,et al.  Structural basis of macromolecular recognition. , 2002, Advances in protein chemistry.

[52]  Zhengwei Zhu,et al.  Templates are available to model nearly all complexes of structurally characterized proteins , 2012, Proceedings of the National Academy of Sciences.

[53]  Yifeng D. Yang,et al.  Multi‐LZerD: Multiple protein docking for asymmetric complexes , 2012, Proteins.

[54]  Chenghua Shao,et al.  Trendspotting in the Protein Data Bank , 2013, FEBS letters.

[55]  David E. Kim,et al.  Improved de novo structure prediction in CASP11 by incorporating coevolution information into Rosetta , 2016, Proteins.

[56]  D. Ritchie,et al.  Spherical polar Fourier assembly of protein complexes with arbitrary point group symmetry , 2016 .

[57]  S. Wodak,et al.  Docking and scoring protein complexes: CAPRI 3rd Edition , 2007, Proteins.

[58]  Kliment Olechnovič,et al.  VoroMQA: Assessment of protein structure quality using interatomic contact areas , 2017, Proteins.

[59]  Dima Kozakov,et al.  Convergence and combination of methods in protein-protein docking. , 2009, Current opinion in structural biology.

[60]  Lukas Zimmermann,et al.  A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. , 2017, Journal of molecular biology.

[61]  J. Thornton,et al.  Structural characterisation and functional significance of transient protein-protein interactions. , 2003, Journal of molecular biology.

[62]  David T. Jones,et al.  MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins , 2014, Bioinform..

[63]  Yifan Cheng,et al.  How Cryo-EM Became so Hot , 2017, Cell.

[64]  David Baker,et al.  Computational design of novel protein binders and experimental affinity maturation. , 2013, Methods in enzymology.

[65]  Zhen Li,et al.  Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model , 2016, bioRxiv.

[66]  Alexandre M J J Bonvin,et al.  How proteins get in touch: interface prediction in the study of biomolecular complexes. , 2008, Current protein & peptide science.

[67]  Kengo Kinoshita,et al.  Community-wide assessment of protein-interface modeling suggests improvements to design methodology. , 2011, Journal of molecular biology.

[68]  S. Wodak,et al.  Prediction of protein backbone conformation based on seven structure assignments. Influence of local interactions. , 1991, Journal of molecular biology.

[69]  Zhiping Weng,et al.  M-ZDOCK: a grid-based approach for Cn symmetric multimer docking , 2005, Bioinform..

[70]  Xiaoqin Zou,et al.  Statistical mechanics‐based method to extract atomic distance‐dependent potentials from protein structures , 2011, Proteins.

[71]  Björn Wallner,et al.  DockQ: A Quality Measure for Protein-Protein Docking Models , 2016, PloS one.

[72]  David W Ritchie,et al.  Recent progress and future directions in protein-protein docking. , 2008, Current protein & peptide science.

[73]  Vittorio Scarano,et al.  CONSRANK: a server for the analysis, comparison and ranking of docking models based on inter-residue contacts , 2015, Bioinform..

[74]  Georgios A. Pavlopoulos,et al.  Protein structure determination using metagenome sequence data , 2017, Science.

[75]  Julie C. Mitchell,et al.  Community‐wide evaluation of methods for predicting the effect of mutations on protein–protein interactions , 2013, Proteins.