Blind prediction of homo‐ and hetero‐protein complexes: The CASP13‐CAPRI experiment
暂无分享,去创建一个
Elodie Laine | Alessandra Carbone | Adam Liwo | Genki Terashi | Daisuke Kihara | Zhen Cao | Luigi Cavallo | Sameer Velankar | Xiaoqin Zou | Sheng-You Huang | Minkyung Baek | Chaok Seok | Zhiping Weng | Jianlin Cheng | Hang Shi | Alexandre M J J Bonvin | Silvia Crivelli | Dima Kozakov | Dmitri Beglov | Sandor Vajda | Cunliang Geng | Zhiwei Ma | David W Ritchie | Isaure Chauvot de Beauchêne | Brian Jiménez-García | Thom Vreven | Ren Kong | Shan Chang | Kliment Olechnovič | Mikhail Ignatov | Miguel Romero-Durana | Charles Christoffer | Maria Elisa Ruiz Echartea | Jie Hou | Ilya A Vakser | Cezary Czaplewski | Sergei Grudinin | Mikhail Karasikov | Guillaume Pagès | Jorge Roel-Touris | Varsha D. Badal | Petras J Kundrotas | Maria Kadukova | Česlovas Venclovas | Yumeng Yan | Dzmitry Padhorny | Israel Desta | Taeyong Park | Ragul Gowthaman | Johnathan D. Guest | Juan Fernandez-Recio | Woong-Hee Shin | Tunde Aderinwale | Xianjin Xu | Romina Oliva | Marc F Lensink | Shoshana J Wodak | Marie-Dominique Devignes | Raphaël A G Chaleil | Paul A Bates | Miriam Eisenstein | Brian G Pierce | Li Xue | Adrien S J Melquiond | Liming Qiu | Iain H Moal | Yue Cao | Sweta Vangaveti | Guillaume Brysbaert | Yang Shen | Sergey Samsonov | Bernard Maigret | Nurul Nadzirin | Hyeonuk Woo | Jörg Schaarschmidt | Francesco Ambrosetti | Charles W Christoffer | Paweł Krupa | Rui Duan | Tyler Borrman | Merav Braitbard | Agnieszka Karczynska | Varsha D Badal | Tereza Gerguri | Ran-Ran Liu | Xi-Ming Xu | Emilia Lubecka | Agnieszka Lipska | Magdalena Mozolewska | Łukasz Golon | Mireia Rosell | Luis Angel Rodríguez-Lumbreras | Lucía Díaz-Bueno | Sai Raghavendra Maddhuri Venkata Subraman | Kathyn Porter | Sergey Kotelnikov | Didier Barradas-Bautista | Lirane Bitton | Dina Scheidman-Duhovny | Justas DapkŪnas | Saveliy Belkin | Devlina Chakravarty | Johnathan D Guest | Benjamin Ryan Merideth | Panos I Koukos | Mikael E Trellet | Charlotte W van Noort | Rodrigo V Honorato | Raphael A. G. Chaleil | Agnieszka S. Karczynska | A. Liwo | Z. Weng | S. Wodak | D. Kihara | Jianlin Cheng | Č. Venclovas | S. Vajda | M. Eisenstein | I. Vakser | J. Fernández-Recio | P. Bates | Chaok Seok | B. Pierce | Xianjin Xu | D. Kozakov | D. Beglov | D. Ritchie | S. Velankar | C. Czaplewski | A. Carbone | S. Crivelli | Yang Shen | Mikhail Karasikov | X. Zou | Shan Chang | M. Lensink | M. Trellet | A. Bonvin | T. Vreven | I. Moal | B. Jiménez-García | P. Krupa | M. Mozolewska | L. Xue | B. Maigret | A. Melquiond | M. Devignes | É. Laine | R. Gowthaman | Didier Barradas-Bautista | Mireia Rosell | D. Padhorny | Devlina Chakravarty | Woong-Hee Shin | P. Kundrotas | L. Cavallo | R. Oliva | G. Brysbaert | Sergei Grudinin | F. Ambrosetti | Jie Hou | S. Samsonov | Genki Terashi | Zhen Cao | Tyler Borrman | Shengyou Huang | Taeyong Park | Hyeonuk Woo | Yumeng Yan | A. Lipska | E. Lubecka | Łukasz Golon | Miguel Romero-Durana | R. Kong | Saveliy Belkin | J. Dapkūnas | Lirane Bitton | R. Honorato | Charlotte W. van Noort | Liming Qiu | Mikhail Ignatov | Tereza Gerguri | Kliment Olechnovič | Yue Cao | Isaure Chauvot de Beauchêne | Maria Kadukova | Nurul Nadzirin | M. Braitbard | S. Vangaveti | J. Schaarschmidt | Zhiwei Ma | J. Schaarschmidt | M. Baek | Israel T. Desta | S. Kotelnikov | C. Geng | J. Roel-Touris | R. Duan | Luis A Rodríguez-Lumbreras | Guillaume Pagès | Tunde Aderinwale | P. Koukos | Hang Shi | Ranran Liu | Xi-Ming Xu | Lucía Díaz-Bueno | Sai Raghavendra Maddhuri Venkata Subraman | Kathyn Porter | Dina Scheidman-Duhovny | Benjamin Ryan Merideth | M. E. R. Echartea | Brian Jiménez‐García | Francesco Ambrosetti | Jorge Roel‐Touris | M. E. Echartea
[1] Jose M. Duarte,et al. Automated evaluation of quaternary structures from protein crystals , 2017, bioRxiv.
[2] T. Yeates. Geometric Principles for Designing Highly Symmetric Self-Assembling Protein Nanomaterials. , 2017, Annual review of biophysics.
[3] SödingJohannes. Protein homology detection by HMM--HMM comparison , 2005 .
[4] Torsten Schwede,et al. Assessment of protein assembly prediction in CASP12 , 2018, Proteins.
[5] Hongyi Zhou,et al. Distance‐scaled, finite ideal‐gas reference state improves structure‐derived potentials of mean force for structure selection and stability prediction , 2002, Protein science : a publication of the Protein Society.
[6] Thomas A. Hopf,et al. Protein structure prediction from sequence variation , 2012, Nature Biotechnology.
[7] C. Chothia,et al. The atomic structure of protein-protein recognition sites. , 1999, Journal of molecular biology.
[8] Johannes Söding,et al. Fast and accurate automatic structure prediction with HHpred , 2009, Proteins.
[9] S. Wodak,et al. Modeling protein–protein and protein–peptide complexes: CAPRI 6th edition , 2017, Proteins.
[10] Shoshana J. Wodak,et al. Generating and testing protein folds , 1993 .
[11] Marc F Lensink,et al. Docking and scoring protein interactions: CAPRI 2009 , 2010, Proteins.
[12] Byunghan Lee,et al. Deep learning in bioinformatics , 2016, Briefings Bioinform..
[13] A. Barabasi,et al. Network medicine : a network-based approach to human disease , 2010 .
[14] Denise Gorse,et al. Morphological aspects of oligomeric protein structures. , 2005, Progress in biophysics and molecular biology.
[15] Pinak Chakrabarti,et al. The subunit interfaces of weakly associated homodimeric proteins. , 2010, Journal of molecular biology.
[16] Sergei Grudinin,et al. Modeling and minimizing CAPRI round 30 symmetrical protein complexes from CASP‐11 structural models , 2017, Proteins.
[17] Sameer Velankar,et al. The challenge of modeling protein assemblies: the CASP12‐CAPRI experiment , 2018, Proteins.
[18] Emmanuel D Levy,et al. Structural, evolutionary, and assembly principles of protein oligomerization. , 2013, Progress in molecular biology and translational science.
[19] Zoran Obradovic,et al. Statistical analysis of interface similarity in crystals of homologous proteins. , 2008, Journal of molecular biology.
[20] M. Eisenstein,et al. Construction of molecular assemblies via docking: Modeling of tetramers with D2 symmetry , 2003, Proteins.
[21] Brian D. Weitzner,et al. De novo design of potent and selective mimics of IL-2 and IL-15 , 2019, Nature.
[22] Dima Kozakov,et al. The ClusPro web server for protein–protein docking , 2017, Nature Protocols.
[23] A. Biegert,et al. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment , 2011, Nature Methods.
[24] Ben M. Webb,et al. Integrative structure modeling with IMP , 2017 .
[25] Ceslovas Venclovas,et al. The PPI 3 D web server for searching , analyzing and modeling protein – protein interactions in the context of 3 D structures , 2017 .
[26] Kengo Kinoshita,et al. Blind prediction of interfacial water positions in CAPRI , 2014, Proteins.
[27] D. Ritchie,et al. Protein docking using spherical polar Fourier correlations , 2000, Proteins.
[28] S. Wodak,et al. Extracting information on folding from the amino acid sequence: accurate predictions for protein regions with preferred conformation in the absence of tertiary interactions. , 1992, Biochemistry.
[29] Narayanan Eswar,et al. Protein structure modeling with MODELLER. , 2008, Methods in molecular biology.
[30] Timothy A. Whitehead,et al. Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing , 2012, Nature Biotechnology.
[31] Genki Terashi,et al. Modeling disordered protein interactions from biophysical principles , 2017, PLoS Comput. Biol..
[32] Sheng-You Huang,et al. HSYMDOCK: a docking web server for predicting the structure of protein homo-oligomers with Cn or Dn symmetry , 2018, Nucleic Acids Res..
[33] Andrej Sali,et al. Integrative Structural Biology , 2013, Science.
[34] T. N. Bhat,et al. The Protein Data Bank , 2000, Nucleic Acids Res..
[35] S. Wodak,et al. Factors influencing the ability of knowledge-based potentials to identify native sequence-structure matches. , 1994, Journal of molecular biology.
[36] J. Skolnick,et al. GOAP: a generalized orientation-dependent, all-atom statistical potential for protein structure prediction. , 2011, Biophysical journal.
[37] Marc F Lensink,et al. Docking, scoring, and affinity prediction in CAPRI , 2013, Proteins.
[38] Yang Zhang,et al. Template-based structure modeling of protein-protein interactions. , 2014, Current opinion in structural biology.
[39] Petras J. Kundrotas,et al. Modeling CAPRI targets 110‐120 by template‐based and free docking using contact potential and combined scoring function , 2018, Proteins.
[40] Daisuke Kihara,et al. Prediction of homoprotein and heteroprotein complexes by protein docking and template‐based modeling: A CASP‐CAPRI experiment , 2016, Proteins.
[41] S. Scheres,et al. How cryo-EM is revolutionizing structural biology. , 2015, Trends in biochemical sciences.
[42] Marc F Lensink,et al. Blind predictions of protein interfaces by docking calculations in CAPRI , 2010, Proteins.
[43] Patrick Aloy,et al. Assessing the applicability of template-based protein docking in the twilight zone. , 2014, Structure.
[44] Jose M. Duarte,et al. Assessment of protein assembly prediction in CASP13 , 2019, Proteins.
[45] R. Sharan,et al. Protein networks in disease. , 2008, Genome research.
[46] Stephen R. Comeau,et al. Predicting oligomeric assemblies: N-mers a primer. , 2005, Journal of structural biology.
[47] Ben M. Webb,et al. Integrative structure modeling with the Integrative Modeling Platform , 2017, Protein science : a publication of the Protein Society.
[48] Ruth Nussinov,et al. An integrated suite of fast docking algorithms , 2010, Proteins.
[49] Kliment Olechnovic,et al. The PPI3D web server for searching, analyzing and modeling protein‐protein interactions in the context of 3D structures , 2016, Bioinform..
[50] K. Henrick,et al. Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.
[51] J. Janin,et al. Structural basis of macromolecular recognition. , 2002, Advances in protein chemistry.
[52] Zhengwei Zhu,et al. Templates are available to model nearly all complexes of structurally characterized proteins , 2012, Proceedings of the National Academy of Sciences.
[53] Yifeng D. Yang,et al. Multi‐LZerD: Multiple protein docking for asymmetric complexes , 2012, Proteins.
[54] Chenghua Shao,et al. Trendspotting in the Protein Data Bank , 2013, FEBS letters.
[55] David E. Kim,et al. Improved de novo structure prediction in CASP11 by incorporating coevolution information into Rosetta , 2016, Proteins.
[56] D. Ritchie,et al. Spherical polar Fourier assembly of protein complexes with arbitrary point group symmetry , 2016 .
[57] S. Wodak,et al. Docking and scoring protein complexes: CAPRI 3rd Edition , 2007, Proteins.
[58] Kliment Olechnovič,et al. VoroMQA: Assessment of protein structure quality using interatomic contact areas , 2017, Proteins.
[59] Dima Kozakov,et al. Convergence and combination of methods in protein-protein docking. , 2009, Current opinion in structural biology.
[60] Lukas Zimmermann,et al. A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. , 2017, Journal of molecular biology.
[61] J. Thornton,et al. Structural characterisation and functional significance of transient protein-protein interactions. , 2003, Journal of molecular biology.
[62] David T. Jones,et al. MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins , 2014, Bioinform..
[63] Yifan Cheng,et al. How Cryo-EM Became so Hot , 2017, Cell.
[64] David Baker,et al. Computational design of novel protein binders and experimental affinity maturation. , 2013, Methods in enzymology.
[65] Zhen Li,et al. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model , 2016, bioRxiv.
[66] Alexandre M J J Bonvin,et al. How proteins get in touch: interface prediction in the study of biomolecular complexes. , 2008, Current protein & peptide science.
[67] Kengo Kinoshita,et al. Community-wide assessment of protein-interface modeling suggests improvements to design methodology. , 2011, Journal of molecular biology.
[68] S. Wodak,et al. Prediction of protein backbone conformation based on seven structure assignments. Influence of local interactions. , 1991, Journal of molecular biology.
[69] Zhiping Weng,et al. M-ZDOCK: a grid-based approach for Cn symmetric multimer docking , 2005, Bioinform..
[70] Xiaoqin Zou,et al. Statistical mechanics‐based method to extract atomic distance‐dependent potentials from protein structures , 2011, Proteins.
[71] Björn Wallner,et al. DockQ: A Quality Measure for Protein-Protein Docking Models , 2016, PloS one.
[72] David W Ritchie,et al. Recent progress and future directions in protein-protein docking. , 2008, Current protein & peptide science.
[73] Vittorio Scarano,et al. CONSRANK: a server for the analysis, comparison and ranking of docking models based on inter-residue contacts , 2015, Bioinform..
[74] Georgios A. Pavlopoulos,et al. Protein structure determination using metagenome sequence data , 2017, Science.
[75] Julie C. Mitchell,et al. Community‐wide evaluation of methods for predicting the effect of mutations on protein–protein interactions , 2013, Proteins.