Decentralized Feedback Controllers for Multiagent Teams in Environments With Obstacles

We propose a method for synthesizing decentralized feedback controllers for a team of multiple heterogeneous agents navigating a known environment with obstacles. The controllers are designed to drive agents with limited team state information to goal sets while avoiding collisions and maintaining specified proximity constraints. The method, its successful application to nonholonomic agents in dynamic simulation and experimentation, and its limitations are presented in this paper.

[1]  Howie Choset,et al.  Composition of local potential functions for global robot control and navigation , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[2]  M. Ani Hsieh,et al.  Stabilization of Multiple Robots on Stable Orbits via Local Sensing , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[3]  K. Fukuda Frequently Asked Questions in Polyhedral Computation , 2000 .

[4]  Camillo J. Taylor,et al.  A vision-based formation control framework , 2002, IEEE Trans. Robotics Autom..

[5]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[6]  Kostas J. Kyriakopoulos,et al.  Nonholonomic navigation and control of cooperating mobile manipulators , 2003, IEEE Trans. Robotics Autom..

[7]  Mireille E. Broucke,et al.  Necessary and Sufficient Conditions for Reachability on a Simplex , 2005, CDC 2005.

[8]  I.I. Hussein,et al.  Real Time Feedback Control for Nonholonomic Mobile Robots With Obstacles , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[9]  R. Fierro,et al.  Robust vision-based nonlinear formation control , 2006, 2006 American Control Conference.

[10]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[11]  Vijay Kumar,et al.  Decentralized Feedback Controllers for Multiagent Teams in Environments With Obstacles , 2010, IEEE Trans. Robotics.

[12]  George J. Pappas,et al.  Coordination of Multiple Autonomous Vehicles , 2003 .

[13]  Dimos V. Dimarogonas,et al.  Decentralized feedback stabilization of multiple nonholonomic agents , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[14]  Richard T. Vaughan,et al.  The Player/Stage Project: Tools for Multi-Robot and Distributed Sensor Systems , 2003 .

[15]  Vijay Kumar,et al.  Leader-to-formation stability , 2004, IEEE Transactions on Robotics and Automation.

[16]  A. Calise,et al.  TO VISION-BASED FORMATION CONTROL , 2003 .

[17]  Steven M. LaValle,et al.  Computing Smooth Feedback Plans Over Cylindrical Algebraic Decompositions , 2006, Robotics: Science and Systems.

[18]  Howie Choset,et al.  Construction and automated deployment of local potential functions for global robot control and navigation , 2003 .

[19]  S. LaValle,et al.  Smoothly Blending Vector Fields for Global Robot Navigation , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[20]  Dimos V. Dimarogonas,et al.  Decentralized motion control of multiple holonomic agents under input constraints , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[21]  Vijay Kumar,et al.  Modeling and control of formations of nonholonomic mobile robots , 2001, IEEE Trans. Robotics Autom..

[22]  Richard M. Murray,et al.  DISTRIBUTED COOPERATIVE CONTROL OF MULTIPLE VEHICLE FORMATIONS USING STRUCTURAL POTENTIAL FUNCTIONS , 2002 .

[23]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[24]  Xiaoming Hu,et al.  Formation constrained multi-agent control , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[25]  Randy A. Freeman,et al.  Multi-Agent Coordination by Decentralized Estimation and Control , 2008, IEEE Transactions on Automatic Control.

[26]  Vijay Kumar,et al.  Abstractions and controllers for groups of robots in environments with obstacles , 2010, 2010 IEEE International Conference on Robotics and Automation.

[27]  Calin Belta,et al.  Abstraction and control for Groups of robots , 2004, IEEE Transactions on Robotics.

[28]  Jack Snoeyink,et al.  On the time bound for convex decomposition of simple polygons , 1998, CCCG.

[29]  Jan H. van Schuppen,et al.  A control problem for affine dynamical systems on a full-dimensional polytope , 2004, Autom..

[30]  K.M. Passino,et al.  Stability analysis of social foraging swarms , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[31]  S. Shankar Sastry,et al.  Optimization-based formation reconfiguration planning for autonomous vehicles , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[32]  Kostas J. Kyriakopoulos,et al.  Closed loop navigation for multiple holonomic vehicles , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  J. Trinkle,et al.  Controlling Shapes of Ensembles of Robots of Finite Size with Nonholonomic Constraints , 2009 .

[34]  Vijay Kumar,et al.  Experimental Testbed for Large Multirobot Teams , 2008, IEEE Robotics Autom. Mag..

[35]  M. Egerstedt,et al.  Leader-based multi-agent coordination: controllability and optimal control , 2006, 2006 American Control Conference.

[36]  Mato Baotic,et al.  Multi-Parametric Toolbox (MPT) , 2004, HSCC.

[37]  Kostas J. Kyriakopoulos,et al.  Closed loop navigation for multiple non-holonomic vehicles , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[38]  A. Jadbabaie,et al.  Formation control for a cooperative multi-agent system using decentralized navigation functions , 2006, 2006 American Control Conference.

[39]  Vijay Kumar,et al.  Towards Abstraction and Control for Large Groups of Robots , 2003, Control Problems in Robotics.

[40]  Kostas J. Kyriakopoulos,et al.  A feedback-based multiagent navigation framework , 2006, Int. J. Syst. Sci..