A new tractable class of constraint satisfaction problems

Abstract In this paper we consider constraint satisfaction problems where the set of constraint relations is fixed. Feder and Vardi (1998) identified three families of constraint satisfaction problems containing all known polynomially solvable problems. We introduce a new class of problems called para-primal problems, incomparable with the families identified by Feder and Vardi (1998) and we prove that any constraint problem in this class is decidable in polynomial time. As an application of this result we prove a complete classification for the complexity of constraint satisfaction problems under the assumption that the basis contains all the permutation relations. In the proofs, we make an intensive use of algebraic results from clone theory about the structure of para-primal and homogeneous algebras.

[1]  Peter Jeavons,et al.  Tractable constraints closed under a binary operation , 2000 .

[2]  Justin Pearson,et al.  Closure Functions and Width 1 Problems , 1999, CP.

[3]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[4]  Peter Jeavons,et al.  Learnability of Quantified Formulas , 1999, EuroCOLT.

[5]  Marc Gyssens,et al.  A test for Tractability , 1996, CP.

[6]  Ugo Montanari,et al.  Networks of constraints: Fundamental properties and applications to picture processing , 1974, Inf. Sci..

[7]  Pascal Van Hentenryck,et al.  A Generic Arc-Consistency Algorithm and its Specializations , 1992, Artif. Intell..

[8]  Lefteris M. Kirousis Fast Parallel Constraint Satisfaction , 1993, ICALP.

[9]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[10]  Edward Marczewski Homogeneous operations and homogeneous algebras , 1964 .

[11]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[12]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraints on a three-element set , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[13]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[14]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[15]  Peter van Beek,et al.  On the minimality and global consistency of row-convex constraint networks , 1995, JACM.

[16]  David M. Clark,et al.  Plain para primal algebras , 1980 .

[17]  Peter Jeavons FINITE SEMIGROUPS IMPOSING TRACTABLE CONSTRAINTS , 2002 .

[18]  Marc Gyssens,et al.  Decomposing Constraint Satisfaction Problems Using Database Techniques , 1994, Artif. Intell..

[19]  Roland Berger,et al.  Homogeneous algebras , 2002 .

[20]  Francesca Rossi,et al.  Constraint Relaxation may be Perfect , 1991, Artif. Intell..

[21]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[22]  David M. Clark,et al.  Para primal algebras , 1976 .

[23]  Eugene C. Freuder A sufficient condition for backtrack-bounded search , 1985, JACM.

[24]  Andrei A. Bulatov,et al.  Tractable conservative constraint satisfaction problems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[25]  Martin C. Cooper,et al.  Tractable Constraints on Ordered Domains , 1995, Artif. Intell..

[26]  Marc Gyssens,et al.  A Unifying Framework for Tractable Constraints , 1995, CP.

[27]  Martin C. Cooper,et al.  Constraints, Consistency and Closure , 1998, Artif. Intell..

[28]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[29]  Martin C. Cooper,et al.  Characterising Tractable Constraints , 1994, Artif. Intell..

[30]  Peter Jeavons,et al.  Constraint Satisfaction Problems and Finite Algebras , 2000, ICALP.

[31]  Ágnes Szendrei,et al.  Clones in universal algebra , 1986 .

[32]  Rina Dechter,et al.  Network-based heuristics for constraint satisfaction problems , 1988 .