Coordinating Multiple Droplets in Planar Array Digital Microfluidic Systems

In this paper we present an approach to coordinate the motions of droplets in digital microfluidic systems, a new class of lab-on-a-chip systems for biochemical analysis. A digital microfluidic system typically consists of a planar array of cells with electrodes that control the droplets. The primary challenge in using droplet-based systems is that they require the simultaneous coordination of a potentially large number of droplets on the array as the droplets move, mix, and split. In this paper we describe a general-purpose system that uses simple algorithms and yet is versatile. First, we present a semi-automated approach to generate the array layout in terms of components. Next, we discuss simple algorithms to select destination components for the droplets and a decentralized scheme for components to route the droplets on the array. These are then combined into a reconfigurable system that has been simulated in software to perform analyses such as the DNA polymerase chain reaction. The algorithms have been able to successfully coordinate hundreds of droplets simultaneously and perform one or more chemical analyses in parallel. Because it is challenging to analytically characterize the behavior of such systems, simulation methods to detect potential system instability are proposed.

[1]  Steven M. LaValle,et al.  Optimal motion planning for multiple robots having independent goals , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[2]  Dimitri P. Bertsekas,et al.  Data Networks , 1986 .

[3]  Mark H. Overmars,et al.  Coordinated path planning for multiple robots , 1998, Robotics Auton. Syst..

[4]  Shih-Kang Fan,et al.  Manipulation of multiple droplets on N/spl times/M grid by cross-reference EWOD driving scheme and pressure-contact packaging , 2003, The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE.

[5]  Maurice Herlihy,et al.  Hard-Potato routing , 2000, STOC '00.

[6]  E. J.,et al.  ON THE COMPLEXITY OF MOTION PLANNING FOR MULTIPLE INDEPENDENT OBJECTS ; PSPACE HARDNESS OF THE " WAREHOUSEMAN ' S PROBLEM " . * * ) , 2022 .

[7]  Tomás Lozano-Pérez,et al.  On multiple moving objects , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[8]  B. Moor,et al.  Mixed integer programming for multi-vehicle path planning , 2001, 2001 European Control Conference (ECC).

[9]  Eric Klavins,et al.  Automatic Compilation of Concurrent Hybrid Factories from Product Assembly Specifications , 2000, HSCC.

[10]  R. Fair,et al.  Electrowetting-based on-chip sample processing for integrated microfluidics , 2003, IEEE International Electron Devices Meeting 2003.

[11]  R. Fair,et al.  Electrowetting-based actuation of liquid droplets for microfluidic applications , 2000 .

[12]  Micha Sharir,et al.  Motion Planning in the Presence of Moving Obstacles , 1985, FOCS.

[13]  Robert Ghrist,et al.  Finding Topology in a Factory: Configuration Spaces , 2002, Am. Math. Mon..

[14]  Karl F. Biihringer OPTIMAL STRATEGIES FOR MOVING DROPLETS IN DIGITAL MICROFLUIDIC SYSTEMS , 2003 .

[15]  S. Cho,et al.  Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits , 2003 .

[16]  Phil Paik,et al.  Rapid droplet mixers for digital microfluidic systems. , 2003, Lab on a chip.

[17]  A. K. Choudhury,et al.  An Approximate Analysis of the Performance of Deflection Routing in Regular Networks , 1993, IEEE J. Sel. Areas Commun..

[18]  Jean-Claude Latombe,et al.  On Delaying Collision Checking in PRM Planning: Application to Multi-Robot Coordination , 2002, Int. J. Robotics Res..

[19]  Alan A. Desrochers Modeling and Control of Automated Manufacturing Systems , 1989 .

[20]  Tomás Lozano-Pérez,et al.  Deadlock-free and collision-free coordination of two robot manipulators , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[21]  Thierry Siméon,et al.  Path coordination for multiple mobile robots: a resolution-complete algorithm , 2002, IEEE Trans. Robotics Autom..

[22]  S. Zucker,et al.  Toward Efficient Trajectory Planning: The Path-Velocity Decomposition , 1986 .

[23]  Clive Maxfield,et al.  The Design Warrior's Guide to FPGAs: Devices, Tools and Flows , 2004 .

[24]  Karl-Friedrich Böhringer Towards Optimal Strategies for Moving Droplets in Digital Microfluidic Systems , 2004, ICRA.

[25]  Rene L. Cruz,et al.  Nonuniform traffic in the Manhattan Street network , 1991, ICC 91 International Conference on Communications Conference Record.

[26]  Alfred A. Rizzi,et al.  Programming in the architecture for agile assembly , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[27]  Andrew S. Tanenbaum,et al.  Computer Networks, 3rd Edition , 1996, Prentice-Hall international editions.

[28]  Nicholas F. Maxemchuk,et al.  Routing in the Manhattan Street Network , 1987, IEEE Trans. Commun..

[29]  Jie Ding,et al.  Scheduling of microfluidic operations for reconfigurabletwo-dimensional electrowetting arrays , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[30]  Frank Kelly,et al.  Rate control for communication networks: shadow prices, proportional fairness and stability , 1998, J. Oper. Res. Soc..

[31]  Clive ldMax rd Maxfield,et al.  The design warrior's guide to FPGAs , 2004 .

[32]  Bruce Randall Donald,et al.  Algorithmic MEMS , 1998 .

[33]  Seth Hutchinson,et al.  Coordinating the motions of multiple robots with specified trajectories , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[34]  Krishnendu Chakrabarty,et al.  Microelectrofluidic Systems: Modeling and Simulation , 2002 .

[35]  Srinivas Akella,et al.  Coordinating Multiple Robots with Kinodynamic Constraints Along Specified Paths , 2005, Int. J. Robotics Res..

[36]  Antonio Bicchi,et al.  On optimal cooperative conflict resolution for air traffic management systems , 2000, IEEE Trans. Intell. Transp. Syst..

[37]  Mark Lawley,et al.  Polynomial-complexity deadlock avoidance policies for sequential resource allocation systems , 1997, IEEE Trans. Autom. Control..

[38]  Rene L. Cruz,et al.  Nonuniform Traffic in the Manhattan Street Network , 1996, Perform. Evaluation.

[39]  T. Jones,et al.  Dielectrophoretic liquid actuation and nanodroplet formation , 2001 .

[40]  Mark A. Lawley,et al.  Deadlock avoidance for production systems with flexible routing , 1999, IEEE Trans. Robotics Autom..

[41]  R. Syski,et al.  Fundamentals of Queueing Theory , 1999, Technometrics.

[42]  Srinivas Akella,et al.  Coordinating Multiple Droplets in Planar Array Digital Microfluidics System , 2004, WAFR.

[43]  S. Shankar Sastry,et al.  Conflict resolution for air traffic management: a study in multiagent hybrid systems , 1998, IEEE Trans. Autom. Control..

[44]  Ralph L. Hollis,et al.  Distributed Coordination in Modular Precision Assembly Systems , 2001, Int. J. Robotics Res..