Adaptive Sampling for Learning Gaussian Processes Using Mobile Sensor Networks

This paper presents a novel class of self-organizing sensing agents that adaptively learn an anisotropic, spatio-temporal Gaussian process using noisy measurements and move in order to improve the quality of the estimated covariance function. This approach is based on a class of anisotropic covariance functions of Gaussian processes introduced to model a broad range of spatio-temporal physical phenomena. The covariance function is assumed to be unknown a priori. Hence, it is estimated by the maximum a posteriori probability (MAP) estimator. The prediction of the field of interest is then obtained based on the MAP estimate of the covariance function. An optimal sampling strategy is proposed to minimize the information-theoretic cost function of the Fisher Information Matrix. Simulation results demonstrate the effectiveness and the adaptability of the proposed scheme.

[1]  Francesco Bullo,et al.  Optimal sensor placement and motion coordination for target tracking , 2006, Autom..

[2]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[3]  Reza Olfati-Saber,et al.  Flocking for multi-agent dynamic systems: algorithms and theory , 2006, IEEE Transactions on Automatic Control.

[4]  Sulema Aranda,et al.  On Optimal Sensor Placement and Motion Coordination for Target Tracking , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[5]  Joonho Lee,et al.  Swarm intelligence for achieving the global maximum using spatio-temporal Gaussian processes , 2008, 2008 American Control Conference.

[6]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[7]  Joonho Lee,et al.  Biologically-inspired navigation strategies for swarm intelligence using spatial Gaussian processes , 2008 .

[8]  C. Guestrin,et al.  Near-optimal sensor placements: maximizing information while minimizing communication cost , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.

[9]  Randy A. Freeman,et al.  Decentralized Environmental Modeling by Mobile Sensor Networks , 2008, IEEE Transactions on Robotics.

[10]  Michael Jackson,et al.  Optimal Design of Experiments , 1994 .

[11]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[12]  Iain Murray Introduction To Gaussian Processes , 2008 .

[13]  Emilio Frazzoli,et al.  Efficient sensor coverage for acoustic localization , 2007, 2007 46th IEEE Conference on Decision and Control.

[14]  Naomi Ehrich Leonard,et al.  Collective Motion, Sensor Networks, and Ocean Sampling , 2007, Proceedings of the IEEE.

[15]  W. Dunsmuir,et al.  Estimation of nonstationary spatial covariance structure , 2002 .

[16]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[17]  Andreas Krause,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..

[18]  M. Gibbs,et al.  Efficient implementation of gaussian processes , 1997 .

[19]  George J. Pappas,et al.  Stability of Flocking Motion , 2003 .

[20]  Randal W. Beard,et al.  Consensus seeking in multiagent systems under dynamically changing interaction topologies , 2005, IEEE Transactions on Automatic Control.

[21]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[22]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[23]  N. Cressie Kriging Nonstationary Data , 1986 .

[24]  A. Emery,et al.  Optimal experiment design , 1998 .

[25]  Stergios I. Roumeliotis,et al.  Adaptive Sensing for Instantaneous Gas Release Parameter Estimation , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[26]  Jorge Cortes,et al.  Cooperative adaptive sampling of random fields with partially known covariance , 2012 .

[27]  P. Kathirgamanathan,et al.  Source Term Estimation of Pollution from an Instantaneous Point Source , 2002 .

[28]  Jorge Cortés,et al.  Distributed Kriged Kalman Filter for Spatial Estimation , 2009, IEEE Transactions on Automatic Control.

[29]  Jongeun Choi,et al.  Parameter Reduction in Estimated Model Sets for Robust Control , 2010 .

[30]  Jongeun Choi,et al.  Distributed learning and cooperative control for multi-agent systems , 2009, Autom..