The role of single neurons in information processing

Neurons carry out the many operations that extract meaningful information from sensory receptor arrays at the organism's periphery and translate these into action, imagery and memory. Within today's dominant computational paradigm, these operations, involving synapses, membrane ionic channels and changes in membrane potential, are thought of as steps in an algorithm or as computations. The role of neurons in these computations has evolved conceptually from that of a simple integrator of synaptic inputs until a threshold is reached and an output pulse is initiated, to a much more sophisticated processor with mixed analog-digital logic and highly adaptive synaptic elements.

[1]  Emilio Salinas,et al.  Gain Modulation A Major Computational Principle of the Central Nervous System , 2000, Neuron.

[2]  Bartlett W. Mel Synaptic integration in an excitable dendritic tree. , 1993, Journal of neurophysiology.

[3]  Idan Segev,et al.  Methods in Neuronal Modeling , 1988 .

[4]  D. Debanne,et al.  Long‐term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures , 1998, The Journal of physiology.

[5]  J. Leo van Hemmen,et al.  Modeling Synaptic Plasticity in Conjunction with the Timing of Pre- and Postsynaptic Action Potentials , 2000, Neural Computation.

[6]  Rafael Yuste,et al.  From form to function: calcium compartmentalization in dendritic spines , 2000, Nature Neuroscience.

[7]  C. Koch,et al.  The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  Dendritic computation of direction selectivity by retinal ganglion cells. , 2000, Science.

[9]  T. Poggio,et al.  Multiplying with synapses and neurons , 1992 .

[10]  Idan Segev,et al.  Sound grounds for computing dendrites , 1998, Nature.

[11]  Winfried Denk,et al.  Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo , 1999, Nature Neuroscience.

[12]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[13]  Idan Segev,et al.  Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Idan Segev,et al.  Excitable dendrites and spines: earlier theoretical insights elucidate recent direct observations , 1998, Trends in Neurosciences.

[15]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[16]  C. H. Fraser Rowell,et al.  The neuronal basis of a sensory analyser, the acridid movement detector system. IV. The preference for small field stimuli. , 1977, The Journal of experimental biology.

[17]  Bartlett W. Mel,et al.  Information Processing in Dendritic Trees , 1994, Neural Computation.

[18]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[19]  L. T. Rutledge Cellular mechanisms subserving changes in neuronal activity : C. D. Woody, K. A. Brown, T. J. Crow Jr. and J. D. Knispel (Editors). (Brain Info. Serv., UCLA, Los Angeles, Calif., 1974, 167 p., $ 6.00) , 1975 .

[20]  Anthony J. Bell,et al.  Self-organization in Real Neurons: Anti-Hebb in 'Channel Space'? , 1991, NIPS.

[21]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[22]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[23]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[24]  Rob R. de Ruyter van Steveninck,et al.  The metabolic cost of neural information , 1998, Nature Neuroscience.

[25]  G. Laurent,et al.  Computation of Object Approach by a Wide-Field, Motion-Sensitive Neuron , 1999, The Journal of Neuroscience.

[26]  D W Tank,et al.  Direct Measurement of Coupling Between Dendritic Spines and Shafts , 1996, Science.

[27]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[28]  Joel L. Davis,et al.  Single neuron computation , 1992 .

[29]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[30]  E. Marder,et al.  Activity-dependent regulation of conductances in model neurons. , 1993, Science.

[31]  G M Shepherd,et al.  The dendritic spine: a multifunctional integrative unit. , 1996, Journal of neurophysiology.

[32]  Christof Koch,et al.  How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate , 1999, Nature Neuroscience.

[33]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[34]  L. Maler,et al.  Neural architecture of the electrosensory lateral line lobe: adaptations for coincidence detection, a sensory searchlight and frequency-dependent adaptive filtering , 1999, The Journal of experimental biology.

[35]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[36]  D. Chklovskii,et al.  Optimal sizes of dendritic and axonal arbors in a topographic projection. , 1999, Journal of neurophysiology.

[37]  M. Konishi The neural algorithm for sound localization in the owl. , 1990, Harvey lectures.

[38]  N. Spruston,et al.  Action potential initiation and backpropagation in neurons of the mammalian CNS , 1997, Trends in Neurosciences.

[39]  D. Tank,et al.  Dendritic Integration in Mammalian Neurons, a Century after Cajal , 1996, Neuron.

[40]  G. Laurent,et al.  Elementary Computation of Object Approach by a Wide-Field Visual Neuron , 1995, Science.

[41]  William R. Softky,et al.  Sub-millisecond coincidence detection in active dendritic trees , 1994, Neuroscience.

[42]  W. Rall Branching dendritic trees and motoneuron membrane resistivity. , 1959, Experimental neurology.

[43]  A. M. Smith,et al.  A century after cajal. , 1993, Science.

[44]  Bartlett W. Mel,et al.  Translation-Invariant Orientation Tuning in Visual “Complex” Cells Could Derive from Intradendritic Computations , 1998, The Journal of Neuroscience.

[45]  L. Abbott,et al.  Synaptic plasticity: taming the beast , 2000, Nature Neuroscience.

[46]  Tomaso Poggio,et al.  Models of object recognition , 2000, Nature Neuroscience.

[47]  G. Schlotterer Response of the locust descending movement detector neuron to rapidly approaching and withdrawing visual stimuli , 1977 .

[48]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[49]  E. Rubel,et al.  Embryogenesis of arborization pattern and topography of individual axons in N. Laminaris of the chicken brain stem , 1986, The Journal of comparative neurology.

[50]  S. Nelson,et al.  Hebb and homeostasis in neuronal plasticity , 2000, Current Opinion in Neurobiology.

[51]  W Rall,et al.  Computational study of an excitable dendritic spine. , 1988, Journal of neurophysiology.

[52]  勇一 作村,et al.  Biophysics of Computation , 2001 .

[53]  J. Rinzel,et al.  The role of dendrites in auditory coincidence detection , 1998, Nature.

[54]  E. Kandel,et al.  ELECTROPHYSIOLOGY OF HIPPOCAMPAL NEURONS: IV. FAST PREPOTENTIALS. , 1961, Journal of neurophysiology.

[55]  T. Poggio,et al.  Retinal ganglion cells: a functional interpretation of dendritic morphology. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.