Stabilizing receding horizon H∞ controls for linear continuous time-varying systems

In this note, new matrix inequality conditions on the terminal weighting matrices are proposed for linear continuous time-varying systems. Under these conditions, nonincreasing and nondecreasing monotonicities of the saddle point value of a dynamic game are shown to be guaranteed. It is proved that the proposed terminal inequality conditions ensure the closed-loop stability of the receding horizon H/sub /spl infin// control (RHHC). The stabilizing RHHC guarantees the H/sub /spl infin// norm bound of the closed-loop system. The proposed terminal inequality conditions for the monotonicity of the saddle point value and the closed-loop stability include most well-known existing terminal conditions as special cases. The results for time-invariant systems are obtained correspondingly from those in the time-varying case.

[1]  Rayadurgam Srikant,et al.  Hedging policies for failure-prone manufacturing systems: optimality of JIT and bounds on buffer levels , 1998 .

[2]  G. De Nicolao,et al.  On the stability of receding-horizon LQ control with zero-state terminal constraint , 1997, IEEE Trans. Autom. Control..

[3]  D. Mayne,et al.  Robust receding horizon control of constrained nonlinear systems , 1993, IEEE Trans. Autom. Control..

[4]  L. Magni,et al.  Stability margins of nonlinear receding-horizon control via inverse optimality , 1997 .

[5]  이만형,et al.  다중 블록 모델 기법을 이용한 이동 물체 추적용 카메라 시스템 구현 , 1998 .

[6]  T. Kailath,et al.  Stabilizing state-feedback design via the moving horizon method , 1982, 1982 21st IEEE Conference on Decision and Control.

[7]  G. Tadmor Receding horizon revisited: An easy way to robustly stabilize an LTV system , 1992 .

[8]  C. R. Cutler,et al.  Dynamic matrix control¿A computer control algorithm , 1979 .

[9]  B. Anderson,et al.  NEW RESULTS IN LINEAR SYSTEM STABILITY , 1969 .

[10]  Hong Chen,et al.  Dynamic Scheduling of a Multiclass Fluid Network , 1993, Oper. Res..

[11]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[12]  Wook Hyun Kwon,et al.  Receding Horizon Tracking Control as a Predictive Control and its Stability Properties , 1988, 1988 American Control Conference.

[13]  정명진,et al.  거울과 광 표식점을 이용한 스테레오 카메라의 캘리브레이션 , 1999 .

[14]  Stanley B. Gershwin,et al.  A real-time policy for performing setup changes in a manufacturing system , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[15]  Manfred Morari,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[16]  Frank Allgöwer,et al.  A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability , 1997, 1997 European Control Conference (ECC).

[17]  D. Kleinman,et al.  An easy way to stabilize a linear constant system , 1970 .

[18]  E. Gilbert,et al.  Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations , 1988 .

[19]  J. Richalet,et al.  Model predictive heuristic control: Applications to industrial processes , 1978, Autom..

[20]  Wook Hyun Kwon,et al.  On stability of constrained receding horizon control with finite terminal weighting matrix , 1997, 1997 European Control Conference (ECC).

[21]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[22]  Sean P. Meyn The policy iteration algorithm for average reward Markov decision processes with general state space , 1997, IEEE Trans. Autom. Control..

[23]  V. Wertz,et al.  Adaptive Optimal Control: The Thinking Man's G.P.C. , 1991 .

[24]  K. Glover,et al.  A game theoretic approach to moving horizon control , 1993 .

[25]  H. ChenT,et al.  A Quasi-Infinite Horizon Nonlinear Model Predictive Control Scheme with Guaranteed Stability * , 1998 .

[26]  Panganamala Ramana Kumar,et al.  Distributed scheduling of flexible manufacturing systems: stability and performance , 1994, IEEE Trans. Robotics Autom..

[27]  W. Kwon,et al.  On feedback stabilization of time-varying discrete linear systems , 1978 .

[28]  G. Nicolao,et al.  Stabilizing receding-horizon control of nonlinear time-varying systems , 1998, IEEE Trans. Autom. Control..

[29]  D. Kleinman Stabilizing a discrete, constant, linear system with application to iterative methods for solving the Riccati equation , 1974 .

[30]  E. Mosca,et al.  On the stabilizing property of SIORHC , 1994, Autom..

[31]  Wook Hyun Kwon,et al.  Receding horizon H tracking control for time-varying discrete linear systems , 1997 .

[32]  C. R. Cutler,et al.  Optimal Solution of Dynamic Matrix Control with Linear Programing Techniques (LDMC) , 1985, 1985 American Control Conference.

[33]  P. R. Kumar,et al.  Optimal control of pull manufacturing systems , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[34]  W. Kwon,et al.  A modified quadratic cost problem and feedback stabilization of a linear system , 1977 .

[35]  J. Rawlings,et al.  The stability of constrained receding horizon control , 1993, IEEE Trans. Autom. Control..

[36]  M. Gevers,et al.  Fake algebraic Riccati techniques and stability , 1988 .

[37]  T. Basar,et al.  H∞-0ptimal Control and Related Minimax Design Problems: A Dynamic Game Approach , 1996, IEEE Trans. Autom. Control..

[38]  Wook Hyun Kwon,et al.  On stabilizing receding horizon controls for linear continuous time-invariant systems , 2000, IEEE Trans. Autom. Control..

[39]  Armand M. Makowski,et al.  K competing queues with geometric service requirements and linear costs: The μc-rule is always optimal☆ , 1985 .

[40]  R. Bitmead,et al.  Fake Riccati equations for stable receding-horizon control , 1997, 1997 European Control Conference (ECC).