Efficient Group Signatures from Bilinear Pairing

This paper presents two types of group signature schemes from bilinear pairings: the mini type and the improved type. The size of the group public keys and the length of the signatures in both schemes are constant. An on-line third party is introduced to help the schemes to realize the “join” of group members, the “opening” of group signatures, and the immediate “revocation” of group membership. It is shown that the introduction of this party makes our schemes much more simple and efficient than the previous schemes of this kind. The mini group signature is in fact only a BLS short signature. Unfortunately, it has a drawback of key escrow. A dishonest group manager can forge any group signature at his will. To avoid this drawback, we put forward an improved scheme, which is also very simple and efficient, and satisfies all the security requirements of a group signature scheme.

[1]  Marc Joye,et al.  A Practical and Provably Secure Coalition-Resistant Group Signature Scheme , 2000, CRYPTO.

[2]  Alexandra Boldyreva,et al.  Efficient threshold signature, multisignature and blind signature schemes based on the Gap-Diffie-Hellman-Group signature scheme , 2002 .

[3]  Shouhuai Xu,et al.  Leak-free group signatures with immediate revocation , 2004, 24th International Conference on Distributed Computing Systems, 2004. Proceedings..

[4]  Jan Camenisch,et al.  A Group Signature Scheme with Improved Efficiency , 1998, ASIACRYPT.

[5]  Gene Tsudik,et al.  Some Open Issues and New Directions in Group Signatures , 1999, Financial Cryptography.

[6]  Pil Joong Lee,et al.  Advances in Cryptology — ASIACRYPT 2001 , 2001, Lecture Notes in Computer Science.

[7]  Michael Wiener,et al.  Advances in Cryptology — CRYPTO’ 99 , 1999 .

[8]  Hovav Shacham,et al.  Short Signatures from the Weil Pairing , 2001, J. Cryptol..

[9]  Aggelos Kiayias,et al.  Self Protecting Pirates and Black-Box Traitor Tracing , 2001, CRYPTO.

[10]  Giuseppe Ateniese,et al.  Efficient Group Signatures without Trapdoors , 2003, ASIACRYPT.

[11]  Burton S. Kaliski Advances in Cryptology - CRYPTO '97 , 1997 .

[12]  J. Camenisch,et al.  A Group Signature Scheme Based on an RSA-Variant , 1998 .

[13]  David Chaum,et al.  Group Signatures , 1991, EUROCRYPT.

[14]  Jan Camenisch,et al.  Separability and Efficiency for Generic Group Signature Schemes , 1999, CRYPTO.

[15]  Lidong Chen,et al.  New Group Signature Schemes (Extended Abstract) , 1994, EUROCRYPT.

[16]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[17]  Dan Boneh,et al.  A Method for Fast Revocation of Public Key Certificates and Security Capabilities , 2001, USENIX Security Symposium.

[18]  Mihir Bellare Advances in Cryptology — CRYPTO 2000 , 2000, Lecture Notes in Computer Science.

[19]  Jan Camenisch,et al.  Efficient and Generalized Group Signatures , 1997, EUROCRYPT.

[20]  Matthew Franklin,et al.  Advances in Cryptology – CRYPTO 2004 , 2004, Lecture Notes in Computer Science.

[21]  Aggelos Kiayias,et al.  Traceable Signatures , 2004, EUROCRYPT.

[22]  Hugo Krawczyk,et al.  Robust Threshold DSS Signatures , 1996, EUROCRYPT.

[23]  Colin Boyd,et al.  Advances in Cryptology - ASIACRYPT 2001 , 2001 .

[24]  Mihir Bellare,et al.  Foundations of Group Signatures: The Case of Dynamic Groups , 2005, CT-RSA.

[25]  Walter Fumy,et al.  Advances in Cryptology — EUROCRYPT ’97 , 2001, Lecture Notes in Computer Science.

[26]  Alexandra Boldyreva,et al.  Efficient threshold signature , multisignature and blind signature schemes based on the Gap-Diffie-Hellman-group signature scheme , 2002 .

[27]  Chi Sung Laih,et al.  Advances in Cryptology - ASIACRYPT 2003 , 2003 .

[28]  Hovav Shacham,et al.  Short Group Signatures , 2004, CRYPTO.

[29]  Reihaneh Safavi-Naini,et al.  Efficient and Provably Secure Trapdoor-Free Group Signature Schemes from Bilinear Pairings , 2004, ASIACRYPT.

[30]  Alfred Menezes,et al.  Topics in Cryptology – CT-RSA 2005 , 2005 .

[31]  Yvo Desmedt Public Key Cryptography — PKC 2003 , 2002, Lecture Notes in Computer Science.

[32]  Jan Camenisch,et al.  Efficient Group Signature Schemes for Large Groups (Extended Abstract) , 1997, CRYPTO.

[33]  Mihir Bellare,et al.  Foundations of Group Signatures: Formal Definitions, Simplified Requirements, and a Construction Based on General Assumptions , 2003, EUROCRYPT.