Dentate gyrus circuits for encoding, retrieval and discrimination of episodic memories

The dentate gyrus (DG) has a key role in hippocampal memory formation. Intriguingly, DG lesions impair many, but not all, hippocampus-dependent mnemonic functions, indicating that the rest of the hippocampus (CA1–CA3) can operate autonomously under certain conditions. An extensive body of theoretical work has proposed how the architectural elements and various cell types of the DG may underlie its function in cognition. Recent studies recorded and manipulated the activity of different neuron types in the DG during memory tasks and have provided exciting new insights into the mechanisms of DG computational processes, particularly for the encoding, retrieval and discrimination of similar memories. Here, we review these DG-dependent mnemonic functions in light of the new findings and explore mechanistic links between the cellular and network properties of, and the computations performed by, the DG. The dentate gyrus has an important role in memory formation in the hippocampus. In this Review, Thomas Hainmueller and Marlene Bartos examine the cells and circuits of the dentate gyrus, and discuss the evidence indicating that this brain region has multiple mnemonic functions.

[1]  M. Yeckel,et al.  Feedforward excitation of the hippocampus by afferents from the entorhinal cortex: redefinition of the role of the trisynaptic pathway. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[2]  D. Amaral,et al.  Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat , 1990, The Journal of comparative neurology.

[3]  C. Cotman,et al.  Carbachol depresses synaptic responses in the medial but not the lateral perforant path , 1989, Brain Research.

[4]  L. Frank,et al.  Awake Hippocampal Sharp-Wave Ripples Support Spatial Memory , 2012, Science.

[5]  Mark Mayford,et al.  Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice , 2013, eLife.

[6]  Fritjof Helmchen,et al.  Functional Imaging of Dentate Granule Cells in the Adult Mouse Hippocampus , 2016, The Journal of Neuroscience.

[7]  H. Scharfman,et al.  Adult-born hippocampal neurons bidirectionally modulate entorhinal inputs into the dentate gyrus , 2019, Science.

[8]  A. Sik,et al.  Selective spread of neurotropic herpesviruses in the rat hippocampus , 2006, The Journal of comparative neurology.

[9]  James J. Knierim,et al.  CA3 Retrieves Coherent Representations from Degraded Input: Direct Evidence for CA3 Pattern Completion and Dentate Gyrus Pattern Separation , 2014, Neuron.

[10]  B. McNaughton,et al.  Differential modulation of CA1 and dentate gyrus interneurons during exploration of novel environments. , 2004, Journal of neurophysiology.

[11]  Ivan Soltesz,et al.  Dentate gyrus mossy cells control spontaneous convulsive seizures and spatial memory , 2018, Science.

[12]  S. Tonegawa,et al.  Island Cells Control Temporal Association Memory , 2014, Science.

[13]  G. Buzsáki,et al.  Selective suppression of hippocampal ripples impairs spatial memory , 2009, Nature Neuroscience.

[14]  E. Chang,et al.  Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults , 2018, Nature.

[15]  Stefan Leutgeb,et al.  Hippocampal Global Remapping Can Occur without Input from the Medial Entorhinal Cortex , 2018, Cell reports.

[16]  Urs Gerber,et al.  A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit , 2004, Nature.

[17]  J. Knierim,et al.  Major Dissociation Between Medial and Lateral Entorhinal Input to Dorsal Hippocampus , 2005, Science.

[18]  G Buzsáki,et al.  GABAergic Cells Are the Major Postsynaptic Targets of Mossy Fibers in the Rat Hippocampus , 1998, The Journal of Neuroscience.

[19]  G. Westbrook,et al.  Preferential Targeting of Lateral Entorhinal Inputs onto Newly Integrated Granule Cells , 2018, The Journal of Neuroscience.

[20]  W E Skaggs,et al.  Interactions between location and task affect the spatial and directional firing of hippocampal neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  Thomas Wolbers,et al.  The Human Dentate Gyrus Plays a Necessary Role in Discriminating New Memories , 2016, Current Biology.

[22]  W. Ho,et al.  Dendritic spikes in hippocampal granule cells are necessary for long-term potentiation at the perforant path synapse , 2018, bioRxiv.

[23]  J. Knierim,et al.  Spatial Representations of Granule Cells and Mossy Cells of the Dentate Gyrus , 2017, Neuron.

[24]  S. Ge,et al.  A role for primary cilia in glutamatergic synaptic integration of adult-born neurons , 2012, Nature Neuroscience.

[25]  Lacey J. Kitch,et al.  Entorhinal Cortical Ocean Cells Encode Specific Contexts and Drive Context-Specific Fear Memory , 2015, Neuron.

[26]  R. Nicoll,et al.  Comparison of two forms of long-term potentiation in single hippocampal neurons. , 1990, Science.

[27]  Alcino J. Silva,et al.  A shared neural ensemble links distinct contextual memories encoded close in time , 2016, Nature.

[28]  Gilberto Fernando Xavier,et al.  Dentate gyrus and spatial behaviour , 2009, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[29]  B. McNaughton,et al.  Hippocampal granule cells are necessary for normal spatial learning but not for spatially-selective pyramidal cell discharge , 2004, Experimental Brain Research.

[30]  Attila Losonczy,et al.  In Vivo Imaging of Dentate Gyrus Mossy Cells in Behaving Mice , 2017, Neuron.

[31]  G. E. Smith The Human Brain , 1924, Nature.

[32]  James G Heys,et al.  Evidence for a sub-circuit in medial entorhinal cortex representing elapsed time during immobility , 2018, Nature Neuroscience.

[33]  Dmitriy Aronov,et al.  Mapping of a non-spatial dimension by the hippocampal/entorhinal circuit , 2017, Nature.

[34]  B. McNaughton,et al.  Independent Codes for Spatial and Episodic Memory in Hippocampal Neuronal Ensembles , 2005, Science.

[35]  D Marr,et al.  Simple memory: a theory for archicortex. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[36]  M. Boldrini,et al.  Human Hippocampal Neurogenesis Persists throughout Aging. , 2018, Cell stem cell.

[37]  P. Frankland,et al.  Suppression of adult neurogenesis impairs population coding of similar contexts in hippocampal CA3 region , 2012, Nature Communications.

[38]  Diano F. Marrone,et al.  Increased pattern separation in the aged fascia dentata , 2011, Neurobiology of Aging.

[39]  Kazumasa Z. Tanaka,et al.  Reactivation of Neural Ensembles during the Retrieval of Recent and Remote Memory , 2013, Current Biology.

[40]  M. Moser,et al.  Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus , 2007, Science.

[41]  Michael R. Hunsaker,et al.  The role of the dentate gyrus, CA3a,b, and CA3c for detecting spatial and environmental novelty , 2008, Hippocampus.

[42]  Lacey J. Kitch,et al.  Long-term dynamics of CA1 hippocampal place codes , 2013, Nature Neuroscience.

[43]  B. McNaughton,et al.  Spatial selectivity of unit activity in the hippocampal granular layer , 1993, Hippocampus.

[44]  D. Amaral,et al.  Neurons, numbers and the hippocampal network. , 1990, Progress in brain research.

[45]  P. Castillo,et al.  LTP at Hilar Mossy Cell-Dentate Granule Cell Synapses Modulates Dentate Gyrus Output by Increasing Excitation/Inhibition Balance , 2017, Neuron.

[46]  P. Strata,et al.  Learning-related feedforward inhibitory connectivity growth required for memory precision , 2011, Nature.

[47]  Edward B. Han,et al.  Dedicated Hippocampal Inhibitory Networks for Locomotion and Immobility , 2017, The Journal of Neuroscience.

[48]  I. Fried,et al.  Rapid Encoding of New Memories by Individual Neurons in the Human Brain , 2015, Neuron.

[49]  Sung Min Yang,et al.  A disynaptic feedback network activated by experience promotes the integration of new granule cells , 2016, Science.

[50]  G. Buzsáki,et al.  Hippocampal CA1 interneurons: an in vivo intracellular labeling study , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  G. Buzsáki,et al.  Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo , 2002, Nature Neuroscience.

[52]  Susumu Tonegawa,et al.  Transgenic Inhibition of Synaptic Transmission Reveals Role of CA3 Output in Hippocampal Learning , 2008, Science.

[53]  B. McNaughton,et al.  Hippocampal synaptic enhancement and information storage within a distributed memory system , 1987, Trends in Neurosciences.

[54]  C. Lien,et al.  Causal Evidence for the Role of Specific GABAergic Interneuron Types in Entorhinal Recruitment of Dentate Granule Cells , 2016, Scientific Reports.

[55]  C. Lüscher,et al.  Hippocampal Somatostatin Interneurons Control the Size of Neuronal Memory Ensembles , 2016, Neuron.

[56]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[57]  Takashi Kitamura,et al.  The role of engram cells in the systems consolidation of memory , 2018, Nature Reviews Neuroscience.

[58]  Kenji F. Tanaka,et al.  Hippocampal Memory Traces Are Differentially Modulated by Experience, Time, and Adult Neurogenesis , 2014, Neuron.

[59]  Edward M Callaway,et al.  Monosynaptic inputs to new neurons in the dentate gyrus , 2012, Nature Communications.

[60]  Thomas J McHugh,et al.  The hippocampal engram maps experience but not place , 2018, Science.

[61]  Raymond P. Kesner,et al.  Selective lesions of the dentate gyrus produce disruptions in place learning for adjacent spatial locations , 2012, Neurobiology of Learning and Memory.

[62]  Agnès Gruart,et al.  A Differential and Timed Contribution of Identified Hippocampal Synapses to Associative Learning in Mice. , 2015, Cerebral cortex.

[63]  Marc W Howard,et al.  Gradual Changes in Hippocampal Activity Support Remembering the Order of Events , 2007, Neuron.

[64]  L. Nadel,et al.  Viewpoints: how the hippocampus contributes to memory, navigation and cognition , 2017, Nature Neuroscience.

[65]  Jeffrey D. Zaremba,et al.  Distinct Contribution of Adult-Born Hippocampal Granule Cells to Context Encoding , 2016, Neuron.

[66]  Christophe Mulle,et al.  Operation and plasticity of hippocampal CA3 circuits: implications for memory encoding , 2017, Nature Reviews Neuroscience.

[67]  E. Rolls The storage and recall of memories in the hippocampo-cortical system , 2017, Cell and Tissue Research.

[68]  P. Frankland,et al.  Development of Adult-Generated Cell Connectivity with Excitatory and Inhibitory Cell Populations in the Hippocampus , 2015, The Journal of Neuroscience.

[69]  Armin Brandt,et al.  Neural Activity in Human Hippocampal Formation Reveals the Spatial Context of Retrieved Memories , 2013, Science.

[70]  A. Treves,et al.  Theta-paced flickering between place-cell maps in the hippocampus , 2011, Nature.

[71]  P. Buckmaster,et al.  Axon arbors and synaptic connections of a vulnerable population of interneurons in the dentate gyrus in vivo , 2002, The Journal of comparative neurology.

[72]  Paul W. Frankland,et al.  Recovery of “Lost” Infant Memories in Mice , 2018, Current Biology.

[73]  Sachin S. Deshmukh,et al.  Egocentric coding of external items in the lateral entorhinal cortex , 2018, Science.

[74]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[75]  M. Moser,et al.  Traces of Experience in the Lateral Entorhinal Cortex , 2013, Current Biology.

[76]  G. Danscher,et al.  In situ binding of bouton zinc reversibly disrupts performance on a spatial memory task , 1990, Behavioural Brain Research.

[77]  Katie C. Bittner,et al.  Behavioral time scale synaptic plasticity underlies CA1 place fields , 2017, Science.

[78]  R. Kesner,et al.  Encoding versus retrieval of spatial memory: Double dissociation between the dentate gyrus and the perforant path inputs into CA3 in the dorsal hippocampus , 2004, Hippocampus.

[79]  Thomas Hainmueller,et al.  Parallel emergence of stable and dynamic memory engrams in the hippocampus , 2018, Nature.

[80]  A. Fenton,et al.  Adult‐born hippocampal neurons promote cognitive flexibility in mice , 2012, Hippocampus.

[81]  Agnès Gruart,et al.  Rapid erasure of hippocampal memory following inhibition of dentate gyrus granule cells , 2016, Nature Communications.

[82]  J. Sweatt,et al.  Memory-Associated Dynamic Regulation of the “Stable” Core of the Chromatin Particle , 2015, Neuron.

[83]  J. Sarvey,et al.  Muscarinic receptor activation facilitates the induction of long-term potentiation (LTP) in the rat dentate gyrus , 1990, Neuroscience Letters.

[84]  Karl Deisseroth,et al.  Astrocyte Intermediaries of Septal Cholinergic Modulation in the Hippocampus , 2016, Neuron.

[85]  S. Tonegawa,et al.  Creating a False Memory in the Hippocampus , 2013, Science.

[86]  P. E. Gold,et al.  Acetylcholine release in the hippocampus and striatum during place and response training. , 2005, Learning & memory.

[87]  William Wisden,et al.  Parvalbumin-positive CA1 interneurons are required for spatial working but not for reference memory , 2011, Nature Neuroscience.

[88]  Edward S Boyden,et al.  Young adult born neurons enhance hippocampal dependent performance via influences on bilateral networks , 2016, eLife.

[89]  Adam Johnson,et al.  Neural Ensembles in CA3 Transiently Encode Paths Forward of the Animal at a Decision Point , 2007, The Journal of Neuroscience.

[90]  D. Amaral,et al.  The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). , 2007, Progress in brain research.

[91]  P. Frankland,et al.  Neuronal Allocation to a Hippocampal Engram , 2016, Neuropsychopharmacology.

[92]  Viktor János Oláh,et al.  Single Bursts of Individual Granule Cells Functionally Rearrange Feedforward Inhibition , 2018, The Journal of Neuroscience.

[93]  G. Buzsáki,et al.  Cellular bases of hippocampal EEG in the behaving rat , 1983, Brain Research Reviews.

[94]  P. Frankland,et al.  Optical controlling reveals time-dependent roles for adult-born dentate granule cells , 2012, Nature Neuroscience.

[95]  I. Fried,et al.  Internally Generated Reactivation of Single Neurons in Human Hippocampus During Free Recall , 2008, Science.

[96]  A. Marin-Burgin,et al.  Unique Processing During a Period of High Excitation/Inhibition Balance in Adult-Born Neurons , 2012, Science.

[97]  Øyvind Arne Høydal,et al.  Object-vector coding in the medial entorhinal cortex , 2019, Nature.

[98]  James J. Knierim,et al.  Neural Population Evidence of Functional Heterogeneity along the CA3 Transverse Axis: Pattern Completion versus Pattern Separation , 2015, Neuron.

[99]  Morris Moscovitch,et al.  Remote spatial memory in an amnesic person with extensive bilateral hippocampal lesions , 2000, Nature Neuroscience.

[100]  S. Tonegawa,et al.  Young Dentate Granule Cells Mediate Pattern Separation, whereas Old Granule Cells Facilitate Pattern Completion , 2012, Cell.

[101]  B. Zemelman,et al.  Dentate Gyrus Contributes to Retrieval as well as Encoding: Evidence from Context Fear Conditioning, Recall, and Extinction , 2017, The Journal of Neuroscience.

[102]  Michele Pignatelli,et al.  Engram Cell Excitability State Determines the Efficacy of Memory Retrieval , 2019, Neuron.

[103]  Osama B. Mohammed,et al.  In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis , 2013, Brain Structure and Function.

[104]  Eunhee Kim,et al.  Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model , 2018, Science.

[105]  Dietmar Schmitz,et al.  Synaptic plasticity at hippocampal mossy fibre synapses , 2005, Nature Reviews Neuroscience.

[106]  J. Bourassa,et al.  The behavior of mossy cells of the rat dentate gyrus during theta oscillationsin vivo , 1993, Neuroscience.

[107]  G. Buzsáki,et al.  Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells , 1995, Hippocampus.

[108]  German Barrionuevo,et al.  Short- and long-term plasticity of the perforant path synapse in hippocampal area CA3. , 2002, Journal of neurophysiology.

[109]  M. Tsukamoto,et al.  Mossy fibre synaptic NMDA receptors trigger non‐hebbian long‐term potentiation at entorhino‐CA3 synapses in the rat , 2003, The Journal of physiology.

[110]  G. Buzsáki,et al.  Commissural projection to the dentate gyrus of the rat: evidence for feed-forward inhibition , 1981, Brain Research.

[111]  M. Jung,et al.  Separation or binding? Role of the dentate gyrus in hippocampal mnemonic processing , 2017, Neuroscience & Biobehavioral Reviews.

[112]  S. Tonegawa,et al.  Locus coeruleus input to hippocampal CA3 drives single-trial learning of a novel context , 2017, Proceedings of the National Academy of Sciences.

[113]  Maria Diamantaki,et al.  Sparse activity of identified dentate granule cells during spatial exploration , 2016, eLife.

[114]  Hongkui Zeng,et al.  Differential Control of Learning and Anxiety along the Dorsoventral Axis of the Dentate Gyrus , 2013, Neuron.

[115]  Roxana Zeraati,et al.  Manipulating Hippocampal Place Cell Activity by Single-Cell Stimulation in Freely Moving Mice. , 2018, Cell reports.

[116]  M. Bartos,et al.  Joint CP-AMPA and group I mGlu receptor activation is required for synaptic plasticity in dentate gyrus fast-spiking interneurons , 2014, Proceedings of the National Academy of Sciences.

[117]  H. Yamahachi,et al.  Hippocampal Remapping after Partial Inactivation of the Medial Entorhinal Cortex , 2015, Neuron.

[118]  Takashi Kitamura,et al.  Engrams and circuits crucial for systems consolidation of a memory , 2017, Science.

[119]  Dheeraj S. Roy,et al.  Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease , 2016, Nature.

[120]  S. Corkin What's new with the amnesic patient H.M.? , 2002, Nature Reviews Neuroscience.

[121]  C. Lien,et al.  Differential Recruitment of Dentate Gyrus Interneuron Types by Commissural Versus Perforant Pathways. , 2016, Cerebral cortex.

[122]  Csaba Varga,et al.  Extended Interneuronal Network of the Dentate Gyrus. , 2017, Cell reports.

[123]  S. Royer,et al.  Dentate granule and mossy cells exhibit distinct spatiotemporal responses to local change in a one-dimensional landscape of visual-tactile cues , 2019, Scientific Reports.

[124]  L. Saksida,et al.  A Functional Role for Adult Hippocampal Neurogenesis in Spatial Pattern Separation , 2009, Science.

[125]  M. G. Faulkner,et al.  Engram cells retain memory under retrograde amnesia , 2015, Science.

[126]  K. Wu,et al.  Functional interconnections between CA3 and the dentate gyrus revealed by current source density analysis , 1998, Hippocampus.

[127]  K. Deisseroth,et al.  Optogenetic stimulation of a hippocampal engram activates fear memory recall , 2012, Nature.

[128]  H. Eichenbaum The Cognitive Neuroscience of Memory , 2002 .

[129]  Bong-Kiun Kaang,et al.  Interregional synaptic maps among engram cells underlie memory formation , 2018, Science.

[130]  Mu-ming Poo,et al.  Spike Train Timing-Dependent Associative Modification of Hippocampal CA3 Recurrent Synapses by Mossy Fibers , 2004, Neuron.

[131]  M. Quirk,et al.  Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory Recall , 2002, Science.

[132]  Nils Z. Borgesius,et al.  A Novel Mechanism for the Grid-to-Place Cell Transformation Revealed by Transgenic Depolarization of Medial Entorhinal Cortex Layer II , 2017, Neuron.

[133]  Lisa M. Giocomo,et al.  Neuromodulation by Glutamate and Acetylcholine can Change Circuit Dynamics by Regulating the Relative Influence of Afferent Input and Excitatory Feedback , 2007, Molecular Neurobiology.

[134]  Kiah Hardcastle,et al.  Grid scale drives the scale and long-term stability of place maps , 2018, Nature Neuroscience.

[135]  Milenna Tamara van Dijk,et al.  On How the Dentate Gyrus Contributes to Memory Discrimination , 2017, Neuron.

[136]  L. Nadel,et al.  Multiple trace theory of human memory: Computational, neuroimaging, and neuropsychological results , 2000, Hippocampus.

[137]  B. Derrick,et al.  Long-term potentiation in direct perforant path projections to the hippocampal CA3 region in vivo. , 2002, Journal of neurophysiology.

[138]  R. S. Sloviter,et al.  Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy. , 1989, Science.

[139]  H. van Praag,et al.  Functional circuits of new neurons in the dentate gyrus , 2013, Front. Neural Circuits.

[140]  N. Toni,et al.  Mossy Cells Control Adult Neural Stem Cell Quiescence and Maintenance through a Dynamic Balance between Direct and Indirect Pathways , 2018, Neuron.

[141]  C. Harley,et al.  Locus coeruleus potentiation of dentate gyrus responses: Evidence for two systems , 1989, Brain Research Bulletin.

[142]  M. Quirk,et al.  Hippocampal CA3 NMDA Receptors Are Crucial for Memory Acquisition of One-Time Experience , 2003, Neuron.

[143]  J. Sweatt,et al.  Mechanisms of memory. , 2003, Journal of geriatric psychiatry and neurology.

[144]  D. Hosford,et al.  Induction of c-fos mRNA by kindled seizures: complex relationship with neuronal burst firing , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[145]  Arne D. Ekstrom,et al.  A contextual binding theory of episodic memory: systems consolidation reconsidered , 2019, Nature Reviews Neuroscience.

[146]  Denise Manahan-Vaughan,et al.  Learning-Facilitated Synaptic Plasticity at CA3 Mossy Fiber and Commissural–Associational Synapses Reveals Different Roles in Information Processing , 2011, Cerebral cortex.

[147]  C. Stark,et al.  Pattern Separation in the Human Hippocampal CA3 and Dentate Gyrus , 2008, Science.

[148]  Marc W Howard,et al.  The Same Hippocampal CA1 Population Simultaneously Codes Temporal Information over Multiple Timescales , 2018, Current Biology.

[149]  Kate J. Jeffery,et al.  Purely Translational Realignment in Grid Cell Firing Patterns Following Nonmetric Context Change , 2015, Cerebral cortex.

[150]  Maria Diamantaki,et al.  Priming Spatial Activity by Single-Cell Stimulation in the Dentate Gyrus of Freely Moving Rats , 2016, Current Biology.

[151]  David E. Rumelhart,et al.  Neuroscience and connectionist theory , 2013 .

[152]  R. Kesner,et al.  Cholinergic modulation of the hippocampus during encoding and retrieval , 2003, Neurobiology of Learning and Memory.

[153]  A role for primary cilia in glutamatergic synaptic integration of adult-born neurons , 2012, Nature Neuroscience.

[154]  G. Schoenbaum Faculty Opinions recommendation of Viewpoints: how the hippocampus contributes to memory, navigation and cognition. , 2019, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[155]  H. Eichenbaum,et al.  Complementary Functional Organization of Neuronal Activity Patterns in the Perirhinal, Lateral Entorhinal, and Medial Entorhinal Cortices , 2016, The Journal of Neuroscience.

[156]  P. Jonas,et al.  Distance-dependent inhibition facilitates focality of gamma oscillations in the dentate gyrus , 2017, Nature Communications.

[157]  D. Henze,et al.  Revisiting the role of the hippocampal mossy fiber synapse , 2001, Hippocampus.

[158]  E. Rolls,et al.  Computational analysis of the role of the hippocampus in memory , 1994, Hippocampus.

[159]  György Buzsáki,et al.  Physiological Properties and Behavioral Correlates of Hippocampal Granule Cells and Mossy Cells , 2017, Neuron.

[160]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[161]  Li Lu,et al.  Integrating time from experience in the lateral entorhinal cortex , 2018, Nature.

[162]  Fraser T. Sparks,et al.  Neuronal code for extended time in the hippocampus , 2012, Proceedings of the National Academy of Sciences.

[163]  S. Tronel,et al.  Adult‐born neurons are necessary for extended contextual discrimination , 2012, Hippocampus.

[164]  Dheeraj S. Roy,et al.  Ventral CA1 neurons store social memory , 2016, Science.

[165]  R. Morris,et al.  Locus coeruleus and dopaminergic consolidation of everyday memory , 2016, Nature.

[166]  M. Drew,et al.  4‐ to 6‐week‐old adult‐born hippocampal neurons influence novelty‐evoked exploration and contextual fear conditioning , 2012, Hippocampus.

[167]  Paul E. Gilbert,et al.  Dissociating hippocampal subregions: A double dissociation between dentate gyrus and CA1 , 2001, Hippocampus.

[168]  B. McNaughton,et al.  Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience , 2005, Hippocampus.

[169]  M. Bartos,et al.  Somatostatin-positive interneurons in the dentate gyrus of mice provide local- and long-range septal synaptic inhibition , 2017, eLife.

[170]  E. Kropff,et al.  Delayed Coupling to Feedback Inhibition during a Critical Period for the Integration of Adult-Born Granule Cells , 2015, Neuron.

[171]  M. Frotscher,et al.  Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[172]  Xiangmin Xu,et al.  Local and Long-Range Circuit Connections to Hilar Mossy Cells in the Dentate Gyrus , 2017, eNeuro.

[173]  Kenji Kohno,et al.  Hilar Mossy Cell Degeneration Causes Transient Dentate Granule Cell Hyperexcitability and Impaired Pattern Separation , 2012, Neuron.

[174]  D. W. In memory of ... , 1963, Science.

[175]  H. Scharfman Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[176]  A. F. Schinder,et al.  Maturation and Functional Integration of New Granule Cells into the Adult Hippocampus. , 2015, Cold Spring Harbor perspectives in biology.

[177]  Helen E. Scharfman,et al.  The enigmatic mossy cell of the dentate gyrus , 2016, Nature Reviews Neuroscience.

[178]  Peter Jonas,et al.  Plasticity-dependent, full detonation at hippocampal mossy fiber–CA3 pyramidal neuron synapses , 2016, eLife.

[179]  Nannan Guo,et al.  Dentate granule cell recruitment of feedforward inhibition governs engram maintenance and remote memory generalization , 2018, Nature Medicine.

[180]  P. Jonas,et al.  Theta-Gamma-Modulated Synaptic Currents in Hippocampal Granule Cells In Vivo Define a Mechanism for Network Oscillations , 2013, Neuron.

[181]  G. Buzsáki Two-stage model of memory trace formation: A role for “noisy” brain states , 1989, Neuroscience.

[182]  P. Castillo,et al.  Targeted deletion of AKAP7 in dentate granule cells impairs spatial discrimination , 2016, eLife.

[183]  P. Somogyi,et al.  The hippocampal CA3 network: An in vivo intracellular labeling study , 1994, The Journal of comparative neurology.

[184]  Yuta Senzai,et al.  Function of local circuits in the hippocampal dentate gyrus-CA3 system , 2019, Neuroscience Research.

[185]  Yuchio Yanagawa,et al.  Morpho-physiological Criteria Divide Dentatecc Gyrus Interneurons into Classes , 2013, Hippocampus.

[186]  Marlene Bartos,et al.  Synaptic Properties of SOM- and CCK-Expressing Cells in Dentate Gyrus Interneuron Networks , 2014, The Journal of Neuroscience.

[187]  James J. Knierim,et al.  Tracking the flow of hippocampal computation: Pattern separation, pattern completion, and attractor dynamics , 2016, Neurobiology of Learning and Memory.

[188]  A. Fenton,et al.  Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation , 2011, Nature.

[189]  J. Lassalle,et al.  Reversible Inactivation of the Hippocampal Mossy Fiber Synapses in Mice Impairs Spatial Learning, but neither Consolidation nor Memory Retrieval, in the Morris Navigation Task , 2000, Neurobiology of Learning and Memory.

[190]  G. Buzsáki,et al.  Memory, navigation and theta rhythm in the hippocampal-entorhinal system , 2013, Nature Neuroscience.

[191]  Attila Losonczy,et al.  Dendritic Inhibition in the Hippocampus Supports Fear Learning , 2014, Science.

[192]  J. Lisman,et al.  Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer , 2005, Trends in Neurosciences.

[193]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[194]  M. Wilson,et al.  Dentate Gyrus NMDA Receptors Mediate Rapid Pattern Separation in the Hippocampal Network , 2007, Science.

[195]  Christoph Schmidt-Hieber,et al.  Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus , 2004, Nature.

[196]  Adam Santoro,et al.  Reassessing pattern separation in the dentate gyrus , 2013, Front. Behav. Neurosci..

[197]  J. Lisman,et al.  The Input–Output Transformation of the Hippocampal Granule Cells: From Grid Cells to Place Fields , 2009, The Journal of Neuroscience.

[198]  Sachin S. Deshmukh,et al.  Representation of Non-Spatial and Spatial Information in the Lateral Entorhinal Cortex , 2011, Front. Behav. Neurosci..

[199]  C. Mulle,et al.  Control of Spike Transfer at Hippocampal Mossy Fiber Synapses In Vivo by GABAA and GABAB Receptor-Mediated Inhibition , 2017, The Journal of Neuroscience.

[200]  M. Fanselow Contextual fear, gestalt memories, and the hippocampus , 2000, Behavioural Brain Research.

[201]  T. Bliss,et al.  Brain-Derived Neurotrophic Factor Induces Long-Term Potentiation in Intact Adult Hippocampus: Requirement for ERK Activation Coupled to CREB and Upregulation of Arc Synthesis , 2002, The Journal of Neuroscience.

[202]  H. Scharfman The CA3 "backprojection" to the dentate gyrus. , 2007, Progress in brain research.

[203]  Geoffrey W. Diehl,et al.  Stability of medial entorhinal cortex representations over time , 2018, Hippocampus.

[204]  Roland Krueppel,et al.  Dendritic Integration in Hippocampal Dentate Granule Cells , 2011, Neuron.

[205]  Doyun Lee,et al.  Transient effect of mossy fiber stimulation on spatial firing of CA3 neurons , 2019, Hippocampus.

[206]  Jian Lu,et al.  A Visual-Cue-Dependent Memory Circuit for Place Navigation , 2018, Neuron.

[207]  Daniel A. Dombeck,et al.  Increased Prevalence of Calcium Transients across the Dendritic Arbor during Place Field Formation , 2017, Neuron.

[208]  James J Knierim,et al.  Conflicts between Local and Global Spatial Frameworks Dissociate Neural Representations of the Lateral and Medial Entorhinal Cortex , 2013, The Journal of Neuroscience.

[209]  R. Panichi,et al.  Distinct Determinants of Sparse Activation during Granule Cell Maturation , 2013, The Journal of Neuroscience.

[210]  Phillip Larimer,et al.  Nonrandom Local Circuits in the Dentate Gyrus , 2008, The Journal of Neuroscience.

[211]  Siavash Ahmadi,et al.  DENTATE NETWORK ACTIVITY IS NECESSARY FOR SPATIAL WORKING MEMORY BY SUPPORTING CA3 SHARP-WAVE RIPPLE GENERATION AND PROSPECTIVE FIRING OF CA3 NEURONS , 2017, Nature Neuroscience.

[212]  M. H. What ’ s new with the amnesic patient , 2022 .

[213]  K. Nakazawa,et al.  CA3 NMDA receptors are crucial for rapid and automatic representation of context memory , 2006, The European journal of neuroscience.

[214]  H. Scharfman,et al.  Pattern separation in the dentate gyrus: A role for the CA3 backprojection , 2011, Hippocampus.