The misuse of colour in science communication

The accurate representation of data is essential in science communication. However, colour maps that visually distort data through uneven colour gradients or are unreadable to those with colour-vision deficiency remain prevalent in science. These include, but are not limited to, rainbow-like and red–green colour maps. Here, we present a simple guide for the scientific use of colour. We show how scientifically derived colour maps report true data variations, reduce complexity, and are accessible for people with colour-vision deficiencies. We highlight ways for the scientific community to identify and prevent the misuse of colour in science, and call for a proactive step away from colour misuse among the community, publishers, and the press.

[1]  J. Wolfe,et al.  Five factors that guide attention in visual search , 2017, Nature Human Behaviour.

[2]  Reply to "More on color blindness" , 2011, Nature Methods.

[3]  Bang Wong,et al.  Points of view: Color coding , 2010, Nature Methods.

[4]  Jacques Bertin,et al.  Semiology of Graphics - Diagrams, Networks, Maps , 2010 .

[5]  Ryan S. Renslow,et al.  Optimizing colormaps with consideration for color vision deficiency to enable accurate interpretation of scientific data , 2017, PloS one.

[6]  Chih-Wei L. Huang,et al.  First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole , 2019 .

[7]  Jacques Bertin,et al.  Graphics and graphic information-processing , 1981 .

[8]  Samuel S. Silva,et al.  Using color in visualization: A survey , 2011, Comput. Graph..

[9]  M. Luo,et al.  Uniform colour spaces based on CIECAM02 colour appearance model , 2006 .

[10]  T. Smith,et al.  The C.I.E. colorimetric standards and their use , 1931 .

[11]  A. Milam,et al.  Distribution and morphology of human cone photoreceptors stained with anti‐blue opsin , 1991, The Journal of comparative neurology.

[12]  Roxana Bujack,et al.  Measuring and Modeling the Feature Detection Threshold Functions of Colormaps , 2019, IEEE Transactions on Visualization and Computer Graphics.

[13]  Bevil R. Conway,et al.  Striking individual differences in color perception uncovered by ‘the dress’ photograph , 2015, Current Biology.

[14]  David Travis,et al.  Effective Color Displays: Theory and Practice , 1991 .

[15]  David Rogers,et al.  Visualizing Science: How Color Determines What We See , 2020 .

[16]  K. Thyng,et al.  True Colors of Oceanography: Guidelines for Effective and Accurate Colormap Selection , 2016 .

[17]  Alberto Cairo,et al.  The Functional Art: An introduction to information graphics and visualization , 2012 .

[18]  R M BOYNTON,et al.  Rapid chromatic adaptation and the sensitivity functions of human color vision. , 1956, Journal of the Optical Society of America.

[19]  P. Lennie,et al.  Packing arrangement of the three cone classes in primate retina , 2001, Vision Research.

[20]  Danielle Albers Szafir,et al.  Modeling Color Difference for Visualization Design , 2018, IEEE Transactions on Visualization and Computer Graphics.

[21]  Jeffrey S. Torguson,et al.  Cartography: Thematic Map Design , 1990 .

[22]  Patrick J. Bartlein,et al.  The end of the rainbow? Color schemes for improved data graphics , 2004 .

[23]  Cynthia A. Brewer,et al.  Color Use Guidelines for Mapping and Visualization , 1994 .

[24]  Anne Morgan Spalter,et al.  Interactive color palette tools , 2004, IEEE Computer Graphics and Applications.

[25]  Alan M. MacEachren,et al.  How Maps Work - Representation, Visualization, and Design , 1995 .

[26]  Ed Hawkins,et al.  Neutron facility: European Spallation Source is on track , 2015, Nature.

[27]  Krzysztof Z. Gajos,et al.  Evaluation of Artery Visualizations for Heart Disease Diagnosis , 2011, IEEE Transactions on Visualization and Computer Graphics.

[28]  Frank G. Lemoine,et al.  An improved solution of the gravity field of Mars (GMM‐2B) from Mars Global Surveyor , 2001 .

[29]  James P. Ahrens,et al.  The Good, the Bad, and the Ugly: A Theoretical Framework for the Assessment of Continuous Colormaps , 2018, IEEE Transactions on Visualization and Computer Graphics.

[30]  Noga Alon,et al.  Color-coding , 1995, JACM.

[31]  Edward R. Tufte,et al.  Envisioning Information , 1990 .

[32]  Michael A Webster,et al.  Individual differences and their implications for color perception , 2019, Current Opinion in Behavioral Sciences.

[33]  J. Mayr,et al.  Somewhere Over the Rainbow: How to Make Effective Use of Colors in Meteorological Visualizations , 2015 .

[34]  A. Motulsky,et al.  Molecular patterns of X chromosome-linked color vision genes among 134 men of European ancestry. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Jay Neitz,et al.  The genetics of normal and defective color vision , 2011, Vision Research.

[36]  Kenneth Moreland,et al.  Why We Use Bad Color Maps and What You Can Do About It , 2016, HVEI.

[37]  M. Shansky,et al.  Influence of hue, value, and chroma on the perceived heaviness of colors , 1976 .

[38]  A. Robinson Elements of Cartography , 1953 .

[39]  Fabio Crameri,et al.  Geodynamic diagnostics, scientific visualisation and StagLab 3.0 , 2018 .

[40]  Donald P. Greenberg,et al.  Color-defective vision and computer graphics displays , 1988, IEEE Computer Graphics and Applications.