Spectral residual methods with two new non-monotone line searches for large-scale nonlinear systems of equations

In this study, we develop two new non-monotone line searches and combine them into a spectral residual method. Furthermore, we apply these methods to complementary problems and discuss global convergence under several suitable conditions. Numerical experiments support the efficiency of the presented methods.

[1]  Stefania Bellavia,et al.  An affine scaling trust-region approach to bound-constrained nonlinear systems , 2003 .

[2]  Ying-Jun Jiang,et al.  Additive Schwarz algorithm for the nonlinear complementarity problem with M-function , 2007, Appl. Math. Comput..

[3]  Francisco Facchinei,et al.  An Active Set Newton Algorithm for Large-Scale Nonlinear Programs with Box Constraints , 1998, SIAM J. Optim..

[4]  Philippe L. Toint,et al.  An Assessment of Nonmonotone Linesearch Techniques for Unconstrained Optimization , 1996, SIAM J. Sci. Comput..

[5]  Hongwei Liu,et al.  Non-monotone projection gradient method for non-negative matrix factorization , 2012, Comput. Optim. Appl..

[6]  Song Wang,et al.  A power penalty approach to a Nonlinear Complementarity Problem , 2010, Oper. Res. Lett..

[7]  Chao Zhang,et al.  Minimal Zero Norm Solutions of Linear Complementarity Problems , 2014, J. Optim. Theory Appl..

[8]  Roger Fletcher,et al.  Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming , 2005, Numerische Mathematik.

[9]  Christian Kanzow,et al.  An interior-point affine-scaling trust-region method for semismooth equations with box constraints , 2007, Comput. Optim. Appl..

[11]  L. Grippo,et al.  A nonmonotone line search technique for Newton's method , 1986 .

[12]  Liqun Qi,et al.  Active-Set Projected Trust-Region Algorithm for Box-Constrained Nonsmooth Equations , 2004 .

[13]  José Mario Martínez,et al.  Spectral residual method without gradient information for solving large-scale nonlinear systems of equations , 2006, Math. Comput..

[14]  Hongwei Liu,et al.  Trust-region method for box-constrained semismooth equations and its applications to complementary problems , 2012, Int. J. Comput. Math..

[15]  William W. Hager,et al.  A Nonmonotone Line Search Technique and Its Application to Unconstrained Optimization , 2004, SIAM J. Optim..

[16]  Xiaojun Chen,et al.  On Smoothing Methods for the P[sub 0] Matrix Linear Complementarity Problem , 2000, SIAM J. Optim..

[17]  Christian Kanzow,et al.  On the resolution of monotone complementarity problems , 1996, Comput. Optim. Appl..