Co-manipulation with a library of virtual guiding fixtures

Virtual guiding fixtures constrain the movements of a robot to task-relevant trajectories, and have been successfully applied to, for instance, surgical and manufacturing tasks. Whereas previous work has considered guiding fixtures for single tasks, in this paper we propose a library of guiding fixtures for multiple tasks, and propose methods for (1) creating and adding guides based on machine learning; (2) selecting guides on-line based on probabilistic implementation of guiding fixtures; (3) refining existing guides based on an incremental learning method. We demonstrate in an industrial task that a library of guiding fixtures provides an intuitive haptic interface for joint human–robot completion of tasks, and improves performance in terms of task execution time, mental workload and errors.

[1]  Brian L. Davies,et al.  Active-Constraint Robotics for Surgery , 2006, Proceedings of the IEEE.

[2]  Aude Billard,et al.  Incremental learning of gestures by imitation in a humanoid robot , 2007, 2007 2nd ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[3]  Gregory D. Hager,et al.  Spatial motion constraints: theory and demonstrations for robot guidance using virtual fixtures , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[4]  Allison M. Okamura,et al.  Virtual fixtures for bilateral telemanipulation , 2006 .

[5]  Allison M. Okamura,et al.  Activation cues and force scaling methods for virtual fixtures , 2003, 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2003. HAPTICS 2003. Proceedings..

[6]  Darwin G. Caldwell,et al.  A task-parameterized probabilistic model with minimal intervention control , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[7]  Sandra Hirche,et al.  Risk-Sensitive Optimal Feedback Control for Haptic Assistance , 2012, 2012 IEEE International Conference on Robotics and Automation.

[8]  Jan Peters,et al.  Incremental imitation learning of context-dependent motor skills , 2016, 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids).

[9]  Louis A. Lobes,et al.  Vision-Based Control of a Handheld Surgical Micromanipulator With Virtual Fixtures , 2013, IEEE Transactions on Robotics.

[10]  Brian L. Davies,et al.  Active Constraints/Virtual Fixtures: A Survey , 2014, IEEE Transactions on Robotics.

[11]  L. Held,et al.  Applied Statistical Inference: Likelihood and Bayes , 2013 .

[12]  Seth Hutchinson,et al.  Modeling user's driving-characteristics in a steering task to customize a virtual fixture based on task-performance , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[13]  Max Da Silva Simoes,et al.  Collision avoidance, virtual guides and advanced supervisory control teleoperation techniques for high-tech construction: framework design , 2014 .

[14]  Howard Jay Chizeck,et al.  Advanced telerobotic underwater manipulation using virtual fixtures and haptic rendering , 2013, 2013 OCEANS - San Diego.

[15]  Manuel Lopes,et al.  Robot programming from demonstration, feedback and transfer , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[16]  Andrew T. Irish,et al.  Trajectory Learning for Robot Programming by Demonstration Using Hidden Markov Model and Dynamic Time Warping , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[17]  Ellen R. Girden,et al.  ANOVA: Repeated Measures , 1991 .

[18]  Gennaro Raiola,et al.  Iterative virtual guides programming for human-robot comanipulation , 2017, 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM).

[19]  R. D. Hibberd,et al.  Robot assisted knee surgery , 1995 .

[20]  Louis B. Rosenberg,et al.  Virtual fixtures: Perceptual tools for telerobotic manipulation , 1993, Proceedings of IEEE Virtual Reality Annual International Symposium.

[21]  Peter Kazanzides,et al.  Portability and applicability of virtual fixtures across medical and manufacturing tasks , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[22]  Freek Stulp,et al.  Co-manipulation with multiple probabilistic virtual guides , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[23]  Redwan Alqasemi,et al.  Telemanipulation Assistance Based on Motion Intention Recognition , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[24]  Stuart A. Bowyer,et al.  Dynamic frictional constraints for robot assisted surgery , 2013, 2013 World Haptics Conference (WHC).

[25]  Dongheui Lee,et al.  Incremental kinesthetic teaching of motion primitives using the motion refinement tube , 2011, Auton. Robots.

[26]  Gennaro Raiola Co-manipulation with a library of virtual guides. (Co-manipulation avec une bibliothèque de Guides Virtuels) , 2017 .

[27]  Freek Stulp,et al.  Parallel guiding virtual fixtures: control and stability , 2015, 2015 IEEE International Symposium on Intelligent Control (ISIC).

[28]  Bin Zheng,et al.  Assembling virtual fixtures for guidance in training environments , 2004, 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004. HAPTICS '04. Proceedings..

[29]  Gregory D. Hager,et al.  Dynamic Guidance with Pseudoadmittance Virtual Fixtures , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[30]  Allison M. Okamura,et al.  Recognition of operator motions for real-time assistance using virtual fixtures , 2003, 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2003. HAPTICS 2003. Proceedings..

[31]  Jochen J. Steil,et al.  A user study on kinesthetic teaching of redundant robots in task and configuration space , 2013, HRI 2013.

[32]  J. Edward Colgate,et al.  Investigation of Motion Guidance With Scooter Cobot and Collaborative Learning , 2007, IEEE Transactions on Robotics.

[33]  Carme Torras,et al.  Learning Physical Collaborative Robot Behaviors From Human Demonstrations , 2016, IEEE Transactions on Robotics.

[34]  Gregory D. Hager,et al.  Vision-assisted control for manipulation using virtual fixtures , 2001, IEEE Transactions on Robotics.

[35]  Claude Andriot,et al.  Imposing motion constraints to a force reflecting telerobot through real-time simulation of a virtual mechanism , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[36]  Julie Dumora Contribution à l’interaction physique homme-robot : application à la comanipulation d’objets de grandes dimensions , 2014 .

[37]  Boris Otto,et al.  Design Principles for Industrie 4.0 Scenarios , 2016, 2016 49th Hawaii International Conference on System Sciences (HICSS).

[38]  Danica Kragic,et al.  Adaptive Virtual Fixtures for Machine-Assisted Teleoperation Tasks , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[39]  J. Edward Colgate,et al.  Intelligent assist devices in industrial applications: a review , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[40]  Oliver Kroemer,et al.  Interaction primitives for human-robot cooperation tasks , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[41]  Aude Billard,et al.  On Learning, Representing, and Generalizing a Task in a Humanoid Robot , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).