More Dynamic Data Structures for Geometric Set Cover with Sublinear Update Time

We study geometric set cover problems in dynamic settings, allowing insertions and deletions of points and objects. We present the first dynamic data structure that can maintain an O(1)-approximation in sublinear update time for set cover for axis-aligned squares in 2D. More precisely, we obtain randomized update time O(n2/3+δ) for an arbitrarily small constant δ > 0. Previously, a dynamic geometric set cover data structure with sublinear update time was known only for unit squares by Agarwal, Chang, Suri, Xiao, and Xue [SoCG 2020]. If only an approximate size of the solution is needed, then we can also obtain sublinear amortized update time for disks in 2D and halfspaces in 3D. As a byproduct, our techniques for dynamic set cover also yield an optimal randomized O(n log n)-time algorithm for static set cover for 2D disks and 3D halfspaces, improving our earlier O(n log n(log log n)O(1)) result [SoCG 2020]. 2012 ACM Subject Classification Theory of computation → Computational geometry

[1]  Timothy M. Chan Random Sampling, Halfspace Range Reporting, and Construction of (<= k)-Levels in Three Dimensions , 2000, SIAM J. Comput..

[2]  Timothy M. Chan Three problems about dynamic convex hulls , 2011, SoCG '11.

[3]  Pankaj K. Agarwal,et al.  Geometric Range Searching and Its Relatives , 2007 .

[4]  Kenneth L. Clarkson,et al.  Improved Approximation Algorithms for Geometric Set Cover , 2005, Discret. Comput. Geom..

[5]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[6]  Greg N. Frederickson,et al.  Fast Algorithms for Shortest Paths in Planar Graphs, with Applications , 1987, SIAM J. Comput..

[7]  Ronitt Rubinfeld,et al.  Approximating the Weight of the Euclidean Minimum Spanning Tree in Sublinear Time , 2005, SIAM J. Comput..

[8]  Kenneth L. Clarkson,et al.  Algorithms for Polytope Covering and Approximation , 1993, WADS.

[9]  Nabil H. Mustafa,et al.  Quasi-Polynomial Time Approximation Scheme for Weighted Geometric Set Cover on Pseudodisks and Halfspaces , 2015, SIAM J. Comput..

[10]  Nabil H. Mustafa,et al.  Improved Results on Geometric Hitting Set Problems , 2010, Discret. Comput. Geom..

[11]  Timothy M. Chan Semi-online maintenance of geometric optima and measures , 2002, SODA '02.

[12]  Pankaj K. Agarwal,et al.  Near-Linear Algorithms for Geometric Hitting Sets and Set Covers , 2014, Discrete & Computational Geometry.

[13]  Kenneth L. Clarkson,et al.  Improved Approximation Algorithms for Geometric Set Cover , 2007, Discret. Comput. Geom..

[14]  Timothy M. Chan,et al.  On Approximate Range Counting and Depth , 2007, SCG '07.

[15]  Pankaj K. Agarwal,et al.  Dynamic Geometric Set Cover and Hitting Set , 2020, SoCG.

[16]  Timothy M. Chan,et al.  Faster Approximation Algorithms for Geometric Set Cover , 2020, SoCG.

[17]  Timothy M. Chan Optimal Partition Trees , 2010, SCG.

[18]  Sariel Har-Peled,et al.  Approximation Schemes for Independent Set and Sparse Subsets of Polygons , 2017, J. ACM.

[19]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[20]  Kenneth L. Clarkson,et al.  New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..

[21]  Boris Aronov,et al.  On approximating the depth and related problems , 2005, SODA '05.

[22]  Jirí Matousek,et al.  Efficient partition trees , 1991, SCG '91.

[23]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[24]  Timothy M. Chan A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor queries , 2006, SODA '06.

[25]  Jirí Matousek Range searching with efficient hierarchical cuttings , 1992, SCG '92.

[26]  D. T. Lee,et al.  An Output-Sensitive Approach for the L 1/L ∞ k-Nearest-Neighbor Voronoi Diagram , 2011, ESA.

[27]  Andreas Wiese,et al.  Dynamic Approximate Maximum Independent Set of Intervals, Hypercubes and Hyperrectangles , 2020, SoCG.

[28]  Jirí Matousek,et al.  Reporting Points in Halfspaces , 1992, Comput. Geom..

[29]  Michael T. Goodrich,et al.  Almost optimal set covers in finite VC-dimension , 1995, Discret. Comput. Geom..

[30]  Timothy M. Chan,et al.  Optimal Deterministic Algorithms for 2-d and 3-d Shallow Cuttings , 2015, Discrete & Computational Geometry.