Caching in video CDNs: building strong lines of defense

Planet-scale video Content Delivery Networks (CDNs) deliver a significant fraction of the entire Internet traffic. Effective caching at the edge is vital for the feasibility of these CDNs, which can otherwise incur significant monetary costs and resource overloads in the Internet. We analyze the challenges and requirements for video caching on these CDNs which cannot be addressed by standard solutions. We develop multiple algorithms for caching in these CDNs: (i) An LRU-based baseline solution to address the requirements, (ii) an intelligent ingress-efficient algorithm, (iii) an offline cache aware of future requests (greedy) to estimate the maximum caching efficiency we can expect from any online algorithm, and (iv) an optimal offline cache (for limited scales). We use anonymized actual data from a large-scale, global CDN to evaluate the algorithms and draw conclusions on their suitability for different settings.

[1]  Azer Bestavros,et al.  Popularity-aware greedy dual-size Web proxy caching algorithms , 2000, Proceedings 20th IEEE International Conference on Distributed Computing Systems.

[2]  Sem C. Borst,et al.  Distributed Caching Algorithms for Content Distribution Networks , 2010, 2010 Proceedings IEEE INFOCOM.

[3]  Pablo Rodriguez,et al.  Analysis of web caching architectures: hierarchical and distributed caching , 2001, TNET.

[4]  Virgílio A. F. Almeida,et al.  Characterizing reference locality in the WWW , 1996, Fourth International Conference on Parallel and Distributed Information Systems.

[5]  Spiridon Bakiras,et al.  Combining replica placement and caching techniques in content distribution networks , 2005, Comput. Commun..

[6]  David R. Karger,et al.  Web Caching with Consistent Hashing , 1999, Comput. Networks.

[7]  Jianliang Xu,et al.  QoS-aware replica placement for content distribution , 2005, IEEE Transactions on Parallel and Distributed Systems.

[8]  Baochun Li,et al.  Joint request mapping and response routing for geo-distributed cloud services , 2013, 2013 Proceedings IEEE INFOCOM.

[9]  Peter Scheuermann,et al.  A Case for Delay-Conscious Caching of Web Documents , 1997, Comput. Networks.

[10]  Duane Wessels,et al.  Cache Digests , 1998, Comput. Networks.

[11]  Alec Wolman,et al.  Volley: Automated Data Placement for Geo-Distributed Cloud Services , 2010, NSDI.

[12]  Ramesh K. Sitaraman,et al.  The Akamai network: a platform for high-performance internet applications , 2010, OPSR.

[13]  Zongpeng Li,et al.  Youtube traffic characterization: a view from the edge , 2007, IMC '07.

[14]  David Mazières,et al.  Democratizing Content Publication with Coral , 2004, NSDI.

[15]  Gerhard Weikum,et al.  The LRU-K page replacement algorithm for database disk buffering , 1993, SIGMOD Conference.

[16]  Laszlo A. Belady,et al.  A Study of Replacement Algorithms for Virtual-Storage Computer , 1966, IBM Syst. J..

[17]  Yu Gu,et al.  Watch global, cache local: YouTube network traffic at a campus network: measurements and implications , 2008, Electronic Imaging.

[18]  Patrick Wendell,et al.  DONAR: decentralized server selection for cloud services , 2010, SIGCOMM '10.

[19]  Rajkumar Buyya,et al.  A Taxonomy and Survey of Content Delivery Networks , 2006 .

[20]  Syam Gadde,et al.  Reduce, reuse, recycle: an approach to building large Internet caches , 1997, Proceedings. The Sixth Workshop on Hot Topics in Operating Systems (Cat. No.97TB100133).

[21]  Jian Ni,et al.  Large-scale cooperative caching and application-level multicast in multimedia content delivery networks , 2005, IEEE Communications Magazine.

[22]  George Pallis,et al.  Insight and perspectives for content delivery networks , 2006, CACM.

[23]  Sandy Irani,et al.  Cost-Aware WWW Proxy Caching Algorithms , 1997, USENIX Symposium on Internet Technologies and Systems.

[24]  László Böszörményi,et al.  A survey of Web cache replacement strategies , 2003, CSUR.